Dataset Viewer
Auto-converted to Parquet
id
stringlengths
24
32
index
int32
0
110M
https://openalex.org/W426843617
0
https://openalex.org/W426847802
1
https://openalex.org/W426847806
2
https://openalex.org/W42684885
3
https://openalex.org/W42685175
4
https://openalex.org/W4268525
5
https://openalex.org/W42685308
6
https://openalex.org/W426853375
7
https://openalex.org/W426855162
8
https://openalex.org/W42686107
9
https://openalex.org/W426861303
10
https://openalex.org/W42686394
11
https://openalex.org/W42686403
12
https://openalex.org/W426865364
13
https://openalex.org/W42686726
14
https://openalex.org/W42686867
15
https://openalex.org/W426876847
16
https://openalex.org/W42687823
17
https://openalex.org/W42688086
18
https://openalex.org/W426883407
19
https://openalex.org/W426893613
20
https://openalex.org/W42689419
21
https://openalex.org/W42689598
22
https://openalex.org/W42689603
23
https://openalex.org/W42690052
24
https://openalex.org/W42690395
25
https://openalex.org/W426906
26
https://openalex.org/W426906305
27
https://openalex.org/W426909965
28
https://openalex.org/W4269137
29
https://openalex.org/W42691558
30
https://openalex.org/W42691641
31
https://openalex.org/W42692062
32
https://openalex.org/W426924879
33
https://openalex.org/W42692539
34
https://openalex.org/W42692553
35
https://openalex.org/W426925808
36
https://openalex.org/W42692781
37
https://openalex.org/W42692897
38
https://openalex.org/W42693242
39
https://openalex.org/W426935384
40
https://openalex.org/W42693923
41
https://openalex.org/W42694721
42
https://openalex.org/W42694722
43
https://openalex.org/W426954788
44
https://openalex.org/W42695696
45
https://openalex.org/W426957050
46
https://openalex.org/W42695855
47
https://openalex.org/W426959440
48
https://openalex.org/W4269612
49
https://openalex.org/W426963120
50
https://openalex.org/W42696518
51
https://openalex.org/W426966132
52
https://openalex.org/W42696730
53
https://openalex.org/W42697035
54
https://openalex.org/W426971244
55
https://openalex.org/W42697596
56
https://openalex.org/W42697629
57
https://openalex.org/W42697850
58
https://openalex.org/W42697960
59
https://openalex.org/W42698411
60
https://openalex.org/W42698460
61
https://openalex.org/W4269849
62
https://openalex.org/W42698543
63
https://openalex.org/W426985885
64
https://openalex.org/W426990889
65
https://openalex.org/W42699106
66
https://openalex.org/W42699327
67
https://openalex.org/W42699859
68
https://openalex.org/W427000772
69
https://openalex.org/W427007676
70
https://openalex.org/W42701455
71
https://openalex.org/W427015234
72
https://openalex.org/W42701923
73
https://openalex.org/W42702008
74
https://openalex.org/W42702547
75
https://openalex.org/W427025708
76
https://openalex.org/W42702976
77
https://openalex.org/W42703084
78
https://openalex.org/W427031700
79
https://openalex.org/W427033575
80
https://openalex.org/W42703395
81
https://openalex.org/W427034942
82
https://openalex.org/W427043642
83
https://openalex.org/W42704471
84
https://openalex.org/W42704754
85
https://openalex.org/W42704812
86
https://openalex.org/W427052601
87
https://openalex.org/W42705626
88
https://openalex.org/W42705768
89
https://openalex.org/W42706046
90
https://openalex.org/W42706136
91
https://openalex.org/W427062519
92
https://openalex.org/W42706486
93
https://openalex.org/W42706677
94
https://openalex.org/W42706740
95
https://openalex.org/W427071270
96
https://openalex.org/W42707516
97
https://openalex.org/W4270762
98
https://openalex.org/W427080033
99
End of preview. Expand in Data Studio

abstracts-faiss

This is a faiss index, trained on abstracts-embeddings. A ready-to-go search interface for using this index is available at abstracts-index.

Building

It was trained with the train.py script found at abstracts-search with the options -N -c 65536 (normalized, train 65536 clusters), using the default preprocess technique OPQ96_384 (PCA to a 384-dimensional vector, then apply OPQ for a 96-byte code). Note that, although the Stella model was trained with Matryoshka (MRL) loss, it outputs ordinary vectors which are not expected to be truncated, so PCA was used.

Tuning

The index comes with the Pareto-optimal parameters from faiss.ParameterSpace.explore at index/params.json, so a point on the speed-recall tradeoff can be immediately picked. For reference, the exec_time field is seconds-per-query on an i7-12700H, and the recall field is 1-Recall@1. (1-Recall@1 is the probability that the top result returned by the index is the true closest, measured using a holdout set.) The best recall is 0.756 with a search time of 0.11 seconds, but a recall of 0.723 can be had with a search time of 0.0042 seconds.

Downloads last month
20

Space using colonelwatch/abstracts-faiss 1