name
stringlengths
7
15
statement
stringlengths
75
1.66k
id
stringlengths
16
16
putnam_1978_a6
theorem putnam_1978_a6 (S : Finset (EuclideanSpace ℝ (Fin 2))) (n : β„•) (hn : n = S.card) (npos : n > 0) : ({pair : Set (EuclideanSpace ℝ (Fin 2)) | βˆƒ P ∈ S, βˆƒ Q ∈ S, pair = {P, Q} ∧ dist P Q = 1}.ncard < 2 * (n : ℝ) ^ ((3 : ℝ) / 2)) := sorry
ff1b9c95c26614f1
putnam_1968_a6
abbrev putnam_1968_a6_solution : Set β„‚[X] := sorry -- {X - 1, -(X - 1), X + 1, -(X + 1), X^2 + X - 1, -(X^2 + X - 1), X^2 - X - 1, -(X^2 - X - 1), X^3 + X^2 - X - 1, -(X^3 + X^2 - X - 1), X^3 - X^2 - X + 1, -(X^3 - X^2 - X + 1)} /-- Find all polynomials of the form $\sum_{0}^{n} a_{i} x^{n-i}$ with $n \ge 1$ and $a_i = \pm 1$ for all $0 \le i \le n$ whose roots are all real. -/ theorem putnam_1968_a6 : {P : β„‚[X] | P.natDegree β‰₯ 1 ∧ (βˆ€ k ∈ Set.Icc 0 P.natDegree, P.coeff k = 1 ∨ P.coeff k = -1) ∧ βˆ€ z : β„‚, P.eval z = 0 β†’ βˆƒ r : ℝ, r = z} = putnam_1968_a6_solution := sorry
413e46a7acb94237
putnam_1992_b4
abbrev putnam_1992_b4_solution : β„• := sorry -- 3984 /-- Let $p(x)$ be a nonzero polynomial of degree less than $1992$ having no nonconstant factor in common with $x^3 - x$. Let \[ \frac{d^{1992}}{dx^{1992}} \left( \frac{p(x)}{x^3 - x} \right) = \frac{f(x)}{g(x)} \] for polynomials $f(x)$ and $g(x)$. Find the smallest possible degree of $f(x)$. -/ theorem putnam_1992_b4 (IsValid : Polynomial ℝ β†’ Prop) (pair : Polynomial ℝ β†’ Polynomial ℝ β†’ Prop) (IsValid_def : βˆ€ p, IsValid p ↔ p β‰  0 ∧ p.degree < 1992 ∧ IsCoprime p (X ^ 3 - X)) (hpair : βˆ€ p f, pair p f ↔ βˆƒ g : Polynomial ℝ, iteratedDeriv 1992 (fun x ↦ p.eval x / (x ^ 3 - x)) = fun x ↦ f.eval x / g.eval x) : IsLeast {k : β„• | βˆƒ p f, IsValid p ∧ pair p f ∧ k = f.degree} putnam_1992_b4_solution := sorry
fd8317f67388b9ff
putnam_1982_b4
abbrev putnam_1982_b4_solution : Prop Γ— Prop := sorry -- (True, True) /-- Let $n_1, n_2, \dots, n_s$ be distinct integers such that, for every integer $k$, $n_1n_2\cdots n_s$ divides $(n_1 + k)(n_2 + k) \cdots (n_s + k)$. Prove or provide a counterexample to the following claims: \begin{enumerate} \item For some $i$, $|n_i| = 1$. \item If all $n_i$ are positive, then $\{n_1, n_2, \dots, n_s\} = \{1, 2, \dots, s\}$. \end{enumerate} -/ theorem putnam_1982_b4 (P : Finset β„€ β†’ Prop) (P_def : βˆ€ n, P n ↔ n.Nonempty ∧ βˆ€ k, ∏ i in n, i ∣ ∏ i in n, (i + k)) : ((βˆ€ n, P n β†’ 1 ∈ n ∨ -1 ∈ n) ↔ putnam_1982_b4_solution.1) ∧ ((βˆ€ n, P n β†’ (βˆ€ i ∈ n, 0 < i) β†’ n = Finset.Icc (1 : β„€) n.card) ↔ putnam_1982_b4_solution.2) := sorry
6d84ab14780e2a0a
putnam_2007_b4
abbrev putnam_2007_b4_solution : β„• β†’ β„• := sorry -- fun n ↦ 2 ^ (n + 1) /-- Let $n$ be a positive integer. Find the number of pairs $P, Q$ of polynomials with real coefficients such that \[ (P(X))^2 + (Q(X))^2 = X^{2n} + 1 \] and $\deg P > \deg Q$. -/ theorem putnam_2007_b4 (n : β„•) (npos : n > 0) : ({(P, Q) : (Polynomial ℝ) Γ— (Polynomial ℝ) | P ^ 2 + Q ^ 2 = Polynomial.X ^ (2 * n) + 1 ∧ P.degree > Q.degree}.ncard = putnam_2007_b4_solution n) := sorry
0c44fc2f2b2c0006
putnam_2017_b4
abbrev putnam_2017_b4_solution : ℝ := sorry -- (log 2) ^ 2 /-- Evaluate the sum \begin{gather*} \sum_{k=0}^\infty \left( 3 \cdot \frac{\ln(4k+2)}{4k+2} - \frac{\ln(4k+3)}{4k+3} - \frac{\ln(4k+4)}{4k+4} - \frac{\ln(4k+5)}{4k+5} \right) \ = 3 \cdot \frac{\ln 2}{2} - \frac{\ln 3}{3} - \frac{\ln 4}{4} - \frac{\ln 5}{5} + 3 \cdot \frac{\ln 6}{6} - \frac{\ln 7}{7} \ - \frac{\ln 8}{8} - \frac{\ln 9}{9} + 3 \cdot \frac{\ln 10}{10} - \cdots . \end{gather*} (As usual, $\ln x$ denotes the natural logarithm of $x$.) -/ theorem putnam_2017_b4 : (βˆ‘' k : β„•, (3 * log (4 * k + 2) / (4 * k + 2) - log (4 * k + 3) / (4 * k + 3) - log (4 * k + 4) / (4 * k + 4) - log (4 * k + 5) / (4 * k + 5)) = putnam_2017_b4_solution) := sorry
71a8b73b2110cd18
putnam_1970_b1
abbrev putnam_1970_b1_solution : ℝ := sorry -- Real.exp (2 * Real.log 5 - 4 + 2 * Real.arctan 2) /-- Evaluate the infinite product $\lim_{n \to \infty} \frac{1}{n^4} \prod_{i = 1}^{2n} (n^2 + i^2)^{1/n}$. -/ theorem putnam_1970_b1 : Tendsto (fun n => 1/(n^4) * ∏ i in Finset.Icc (1 : β„€) (2*n), ((n^2 + i^2) : ℝ)^((1 : ℝ)/n)) atTop (𝓝 putnam_1970_b1_solution) := sorry
dc6a98cc79df4cf9
putnam_2014_b2
abbrev putnam_2014_b2_solution : ℝ := sorry -- Real.log (4 / 3) /-- Suppose that \( f \) is a function on the interval \([1,3]\) such that \(-1 \leq f(x) \leq 1\) for all \( x \) and \( \int_{1}^{3} f(x) \, dx = 0 \). How large can \(\int_{1}^{3} \frac{f(x)}{x} \, dx \) be? -/ theorem putnam_2014_b2 : IsGreatest {t | βˆƒ f : ℝ β†’ ℝ, (βˆ€ x : Set.Icc (1 : ℝ) 3, -1 ≀ f x ∧ f x ≀ 1) ∧ (∫ x in Set.Ioo 1 3, f x = 0) ∧ (∫ x in Set.Ioo 1 3, (f x) / x) = t} putnam_2014_b2_solution := sorry
fb03c4d0b8832a77
putnam_2004_b2
theorem putnam_2004_b2 (m n : β„•) (mnpos : m > 0 ∧ n > 0) : ((m + n)! / ((m + n) ^ (m + n) : β„š)) < (((m)! / (m ^ m : β„š)) * ((n)! / (n ^ n : β„š))) := sorry
2d7f932132cc4d74
putnam_1981_b2
abbrev putnam_1981_b2_solution : ℝ := sorry -- 12 - 8 * Real.sqrt 2 /-- Determine the minimum value attained by $$(r - 1)^2 + (\frac{s}{r} - 1)^2 + (\frac{t}{s} - 1)^2 + (\frac{4}{t} - 1)^2$$ across all choices of real $r$, $s$, and $t$ that satisfy $1 \le r \le s \le t \le 4$. -/ theorem putnam_1981_b2 (P : ℝ Γ— ℝ Γ— ℝ β†’ Prop) (hP : P = fun (r, s, t) => 1 ≀ r ∧ r ≀ s ∧ s ≀ t ∧ t ≀ 4) (f : ℝ Γ— ℝ Γ— ℝ β†’ ℝ) (hf : f = fun (r, s, t) => (r - 1)^2 + (s/r - 1)^2 + (t/s - 1)^2 + (4/t - 1)^2) : IsLeast {y | βˆƒ r s t, P (r, s, t) ∧ f (r, s, t) = y} putnam_1981_b2_solution := sorry
0d4485b6f60f63fe
putnam_1991_b2
theorem putnam_1991_b2 (f g : ℝ β†’ ℝ) (fgnconst : Β¬βˆƒ c, f = Function.const ℝ c ∨ g = Function.const ℝ c) (fgdiff : Differentiable ℝ f ∧ Differentiable ℝ g) (fadd : βˆ€ x y, f (x + y) = f x * f y - g x * g y) (gadd : βˆ€ x y, g (x + y) = f x * g y + g x * f y) : (deriv f 0 = 0) β†’ (βˆ€ x, (f x) ^ 2 + (g x) ^ 2 = 1) := sorry
2e924c47b98b8cc8
putnam_1986_b6
theorem putnam_1986_b6 (n : β„•) (npos : n > 0) (F : Type*) [Field F] (A B C D : Matrix (Fin n) (Fin n) F) (hsymm : IsSymm (A * Bα΅€) ∧ IsSymm (C * Dα΅€)) (hid : A * Dα΅€ - B * Cα΅€ = 1) : (Aα΅€ * D - Cα΅€ * B = 1) := sorry
6baaf2b59e0c65dd
putnam_2003_b6
theorem putnam_2003_b6 (f : ℝ β†’ ℝ) (hf : Continuous f) : (∫ x in (0 : ℝ)..1, (∫ y in (0 : ℝ)..1, |f x + f y|)) β‰₯ (∫ x in (0 : ℝ)..1, |f x|) := sorry
d9614a6ce849c09d
putnam_1974_b3
theorem putnam_1974_b3 (Ξ± : ℝ) (ha : Real.cos (Real.pi * Ξ±) = (1 : ℝ)/3) : Irrational Ξ± := sorry
812353adb16a64d9
putnam_1999_a5
theorem putnam_1999_a5 : βˆƒ C : ℝ, βˆ€ p : Polynomial ℝ, p.degree = 1999 β†’ β€–p.eval 0β€– ≀ C * ∫ x in (-1)..1, β€–p.eval xβ€– := sorry
d6ec809a198deb98
putnam_1964_b3
theorem putnam_1964_b3 (f : ℝ β†’ ℝ) (hf : Continuous f ∧ βˆ€ Ξ± > 0, Tendsto (fun n : β„• ↦ f (n * Ξ±)) atTop (𝓝 0)) : (Tendsto f atTop (𝓝 0)) := sorry
2f180c29c45a0c68
putnam_2021_a2
abbrev putnam_2021_a2_solution : ℝ := sorry -- Real.exp 1 /-- For every positive real number $x$, let $g(x)=\lim_{r \to 0}((x+1)^{r+1}-x^{r+1})^\frac{1}{r}$. Find $\lim_{x \to \infty}\frac{g(x)}{x}$. -/ theorem putnam_2021_a2 (g : ℝ β†’ ℝ) (hg : βˆ€ x > 0, Tendsto (fun r : ℝ => ((x + 1) ^ (r + 1) - x ^ (r + 1)) ^ (1 / r)) (𝓝[>] 0) (𝓝 (g x))) : Tendsto (fun x : ℝ => g x / x) atTop (𝓝 putnam_2021_a2_solution) := sorry
ec3fd514b569ad4c
putnam_2017_a2
theorem putnam_2017_a2 (Q : β„• β†’ RatFunc β„š) (hQbase : Q 0 = 1 ∧ Q 1 = (X : β„š[X])) (hQn : βˆ€ n, Q (n + 2) = (Q (n + 1) ^ 2 - 1) / Q n) (n : β„•) (hn : 0 < n) : βˆƒ P : β„€[X], Q n = P.map (Int.castRingHom β„š) := sorry
9e07b70eb44e1453
putnam_2007_a2
abbrev putnam_2007_a2_solution : ENNReal := sorry -- 4 /-- Find the least possible area of a convex set in the plane that intersects both branches of the hyperbola $xy=1$ and both branches of the hyperbola $xy=-1$. (A set $S$ in the plane is called \emph{convex} if for any two points in $S$ the line segment connecting them is contained in $S$.) -/ theorem putnam_2007_a2 : IsLeast {y | βˆƒ S : Set (Fin 2 β†’ ℝ), Convex ℝ S ∧ (βˆƒ p ∈ S, p 0 > 0 ∧ p 1 > 0 ∧ p 0 * p 1 = 1) ∧ (βˆƒ p ∈ S, p 0 < 0 ∧ p 1 < 0 ∧ p 0 * p 1 = 1) ∧ (βˆƒ p ∈ S, p 0 < 0 ∧ p 1 > 0 ∧ p 0 * p 1 = -1) ∧ (βˆƒ p ∈ S, p 0 > 0 ∧ p 1 < 0 ∧ p 0 * p 1 = -1) ∧ volume S = y} putnam_2007_a2_solution := sorry
60f016e566ac51cd
putnam_1982_a2
abbrev putnam_1982_a2_solution : Prop := sorry -- True /-- Let $B_n(x) = 1^x + 2^x + \dots + n^x$ and let $f(n) = \frac{B_n(\log_n 2)}{(n \log_2 n)^2}$. Does $f(2) + f(3) + f(4) + \dots$ converge? -/ theorem putnam_1982_a2 (B : β„• β†’ ℝ β†’ ℝ) (hB : B = fun (n : β„•) (x : ℝ) ↦ βˆ‘ k in Finset.Icc 1 n, (k : ℝ) ^ x) (f : β„• β†’ ℝ) (hf : f = fun n ↦ B n (logb n 2) / (n * logb 2 n) ^ 2) : (βˆƒ L : ℝ, Tendsto (fun N ↦ βˆ‘ j in Finset.Icc 2 N, f j) atTop (𝓝 L)) ↔ putnam_1982_a2_solution := sorry
c7dab1b8de51aa04
putnam_1992_a2
abbrev putnam_1992_a2_solution : ℝ := sorry -- 1992 /-- Define $C(\alpha)$ to be the coefficient of $x^{1992}$ in the power series about $x=0$ of $(1 + x)^\alpha$. Evaluate \[ \int_0^1 \left( C(-y-1) \sum_{k=1}^{1992} \frac{1}{y+k} \right)\,dy. \] -/ theorem putnam_1992_a2 (C : ℝ β†’ ℝ) (hC : C = fun Ξ± ↦ taylorCoeffWithin (fun x ↦ (1 + x) ^ Ξ±) 1992 Set.univ 0) : (∫ y in (0)..1, C (-y - 1) * βˆ‘ k in Finset.Icc (1 : β„•) 1992, 1 / (y + k) = putnam_1992_a2_solution) := sorry
24f79b1bba75a222
putnam_2008_b1
abbrev putnam_2008_b1_solution : β„• := sorry -- 2 def is_rational_point (p : Fin 2 β†’ ℝ) : Prop := βˆƒ (a b : β„š), a = p 0 ∧ b = p 1 def real_circle (c : EuclideanSpace ℝ (Fin 2)) (r : ℝ) : Set (EuclideanSpace ℝ (Fin 2)) := {p | dist p c = r} /-- What is the maximum number of rational points that can lie on a circle in $\mathbb{R}^2$ whose center is not a rational point? (A \emph{rational point} is a point both of whose coordinates are rational numbers.) -/ theorem putnam_2008_b1 : IsGreatest {n : β„• | βˆƒ (c : EuclideanSpace ℝ (Fin 2)) (r : ℝ), Β¬ is_rational_point c ∧ (Set.ncard {p : EuclideanSpace ℝ (Fin 2) | p ∈ real_circle c r ∧ is_rational_point p} = n)} putnam_2008_b1_solution := sorry
5f802f232611746d
putnam_2018_b1
abbrev putnam_2018_b1_solution : Set (Fin 2 β†’ β„€) := sorry -- {v : Fin 2 β†’ β„€ | βˆƒ b : β„€, 0 ≀ b ∧ b ≀ 100 ∧ Even b ∧ v = ![1, b]} /-- Let $\mathcal{P}$ be the set of vectors defined by $\mathcal{P}=\left\{\left.\begin{pmatrix} a \\ b \end{pmatrix}\right| 0 \leq a \leq 2, 0 \leq b \leq 100,\text{ and }a,b \in \mathbb{Z}\right\}$. Find all $\mathbf{v} \in \mathcal{P}$ such that the set $\mathcal{P} \setminus \{\mathbf{v}\}$ obtained by omitting vector $\mathbf{v}$ from $\mathcal{P}$ can be partitioned into two sets of equal size and equal sum. -/ theorem putnam_2018_b1 (P Pvdiff : Finset (Fin 2 β†’ β„€)) (v : Fin 2 β†’ β„€) (hP : P = {v' : Fin 2 β†’ β„€ | 0 ≀ v' 0 ∧ v' 0 ≀ 2 ∧ 0 ≀ v' 1 ∧ v' 1 ≀ 100}) (hPvdiff : Pvdiff = P \ ({v} : Finset (Fin 2 β†’ β„€))) : (v ∈ P ∧ (βˆƒ Q R : Finset (Fin 2 β†’ β„€), (Q βˆͺ R = Pvdiff) ∧ (Q ∩ R = βˆ…) ∧ (Q.card = R.card) ∧ (βˆ‘ q in Q, q 0 = βˆ‘ r in R, r 0) ∧ (βˆ‘ q in Q, q 1 = βˆ‘ r in R, r 1))) ↔ v ∈ putnam_2018_b1_solution := sorry
564890e75c8a6a06
putnam_1985_a6
abbrev putnam_1985_a6_solution : Polynomial ℝ := sorry -- 6 * X ^ 2 + 5 * X + 1 /-- If $p(x)= a_0 + a_1 x + \cdots + a_m x^m$ is a polynomial with real coefficients $a_i$, then set \[ \Gamma(p(x)) = a_0^2 + a_1^2 + \cdots + a_m^2. \] Let $F(x) = 3x^2+7x+2$. Find, with proof, a polynomial $g(x)$ with real coefficients such that \begin{enumerate} \item[(i)] $g(0)=1$, and \item[(ii)] $\Gamma(f(x)^n) = \Gamma(g(x)^n)$ \end{enumerate} for every integer $n \geq 1$. -/ theorem putnam_1985_a6 (Ξ“ : Polynomial ℝ β†’ ℝ) (f : Polynomial ℝ) (hΞ“ : Ξ“ = fun p ↦ βˆ‘ k in Finset.range (p.natDegree + 1), coeff p k ^ 2) (hf : f = 3 * X ^ 2 + 7 * X + 2) : let g := putnam_1985_a6_solution; g.eval 0 = 1 ∧ βˆ€ n : β„•, n β‰₯ 1 β†’ Ξ“ (f ^ n) = Ξ“ (g ^ n) := sorry
920087e2a1d120c5
putnam_1995_a6
theorem putnam_1995_a6 (SM : (n : β„•) β†’ Set (Matrix (Fin 3) (Fin n) β„€)) (Srowsums : (n : β„•) β†’ Matrix (Fin 3) (Fin n) β„€ β†’ Set β„€) (sumsprog : (Set β„€) β†’ Prop) (hSM : βˆ€ n, SM n = {M : Matrix (Fin 3) (Fin n) β„€ | βˆ€ j : Fin n, {M i j | i : Fin 3} = {1, 2, 3}}) (hSrowsums : βˆ€ n M, Srowsums n M = {βˆ‘ j : Fin n, M i j | i : Fin 3}) (hsumsprog : βˆ€ sums, sumsprog sums ↔ sums.encard = 3 ∧ (βˆƒ a b c : β„€, {a, b, c} = sums ∧ b = a + 1 ∧ c = a + 2)) : βˆƒ n β‰₯ 1995, {M : (SM n) | sumsprog (Srowsums n M)}.encard β‰₯ 4 * {M : (SM n) | (Srowsums n M).encard = 1}.encard := sorry
ebeee300772c5c80
putnam_1977_a3
abbrev putnam_1977_a3_solution : (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) β†’ (ℝ β†’ ℝ) := sorry -- fun f g x ↦ g x - f (x - 3) + f (x - 1) + f (x + 1) - f (x + 3) /-- Let $f, g, h$ be functions $\mathbb{R} \to \mathbb{R}$. Find an expression for $h(x)$ in terms of $f$ and $g$ such that $f(x) = \frac{h(x + 1) + h(x - 1)}{2}$ and $g(x) = \frac{h(x + 4) + h(x - 4)}{2}$. -/ theorem putnam_1977_a3 (f g h : ℝ β†’ ℝ) (hf : βˆ€ x, f x = (h (x + 1) + h (x - 1)) / 2) (hg : βˆ€ x, g x = (h (x + 4) + h (x - 4)) / 2) : h = putnam_1977_a3_solution f g := sorry
29708f4d539fb450
putnam_1967_a3
abbrev putnam_1967_a3_solution : β„• := sorry -- 5 /-- Consider polynomial forms $ax^2-bx+c$ with integer coefficients which have two distinct zeros in the open interval $0<x<1$. Exhibit with a proof the least positive integer value of $a$ for which such a polynomial exists. -/ theorem putnam_1967_a3 : IsLeast {a | βˆƒ P : Polynomial β„€, P.degree = 2 ∧ (βˆƒ z1 z2 : Set.Ioo (0 : ℝ) 1, z1 β‰  z2 ∧ aeval (z1 : ℝ) P = 0 ∧ aeval (z2 : ℝ) P = 0) ∧ P.coeff 2 = a ∧ a > 0} putnam_1967_a3_solution := sorry
a1393afbd533eef4
putnam_2022_b2
abbrev putnam_2022_b2_solution : Set β„• := sorry -- {1, 7} /-- Let $\times$ represent the cross product in $\mathbb{R}^3$. For what positive integers $n$ does there exist a set $S \subset \mathbb{R}^3$ with exactly $n$ elements such that $S=\{v \times w:v,w \in S\}$? -/ theorem putnam_2022_b2 (n : β„•) (P : Finset (Fin 3 β†’ ℝ) β†’ Prop) (P_def : βˆ€ S : Finset (Fin 3 β†’ ℝ), P S ↔ (S = {u : Fin 3 β†’ ℝ | βˆƒ v w : S, u = crossProduct v w})) : (0 < n ∧ βˆƒ S : Finset (Fin 3 β†’ ℝ), S.card = n ∧ P S) ↔ n ∈ putnam_2022_b2_solution := sorry
22a37e28d74ba943
putnam_2010_a6
theorem putnam_2010_a6 (f : ℝ β†’ ℝ) (hf : (StrictAntiOn f (Ici 0) ∧ ContinuousOn f (Ici 0) ∧ Tendsto f atTop (𝓝 0))) : Β¬βˆƒ y : ℝ, Tendsto (fun z : ℝ => ∫ x in Ico 0 z, ((f x) - f (x + 1))/(f x)) atTop (𝓝 y) := sorry
9f8b7b28c47dbfae
putnam_2000_a6
theorem putnam_2000_a6 (f : Polynomial β„€) (a : β„• β†’ β„€) (ha0 : a 0 = 0) (ha : βˆ€ n : β„•, a (n + 1) = f.eval (a n)) : ((βˆƒ m > 0, a m = 0) β†’ (a 1 = 0 ∨ a 2 = 0)) := sorry
120b2bcf4011fc6a
putnam_1989_b3
abbrev putnam_1989_b3_solution : β„• β†’ ℝ β†’ ℝ := sorry -- fun n c ↦ c * n ! / (3 ^ n * ∏ m in Finset.Icc (1 : β„€) n, (1 - 2 ^ (-m))) /-- Let $f$ be a function on $[0,\infty)$, differentiable and satisfying \[ f'(x)=-3f(x)+6f(2x) \] for $x>0$. Assume that $|f(x)|\le e^{-\sqrt{x}}$ for $x\ge 0$ (so that $f(x)$ tends rapidly to $0$ as $x$ increases). For $n$ a non-negative integer, define \[ \mu_n=\int_0^\infty x^n f(x)\,dx \] (sometimes called the $n$th moment of $f$). \begin{enumerate} \item[a)] Express $\mu_n$ in terms of $\mu_0$. \item[b)] Prove that the sequence $\{\mu_n \frac{3^n}{n!}\}$ always converges, and that the limit is $0$ only if $\mu_0=0$. \end{enumerate} -/ theorem putnam_1989_b3 (f : ℝ β†’ ℝ) (hfdiff : Differentiable ℝ f) (hfderiv : βˆ€ x > 0, deriv f x = -3 * f x + 6 * f (2 * x)) (hdecay : βˆ€ x β‰₯ 0, |f x| ≀ Real.exp (- √x)) (ΞΌ : β„• β†’ ℝ) (ΞΌ_def : βˆ€ n, ΞΌ n = ∫ x in Set.Ioi 0, x ^ n * f x) : (βˆ€ n, ΞΌ n = putnam_1989_b3_solution n (ΞΌ 0)) ∧ (βˆƒ L, Tendsto (fun n ↦ (ΞΌ n) * 3 ^ n / n !) atTop (𝓝 L)) ∧ (Tendsto (fun n ↦ (ΞΌ n) * 3 ^ n / n !) atTop (𝓝 0) β†’ ΞΌ 0 = 0) := sorry
2642743efb382ade
putnam_2021_b4
theorem putnam_2021_b4 (F : β„• β†’ β„•) (hF : βˆ€ n, F (n + 2) = F (n + 1) + F n) (F01 : F 0 = 0 ∧ F 1 = 1) : βˆ€ m, m > 2 β†’ (βˆƒ p, (∏ k : Set.Icc 1 (F m - 1), (k.1 ^ k.1)) % F m = F p) := sorry
0d0051f2d86cbe59
putnam_1964_a5
theorem putnam_1964_a5 (pa : (β„• β†’ ℝ) β†’ Prop) (hpa : βˆ€ a, pa a ↔ (βˆ€ n : β„•, a n > 0) ∧ βˆƒ L : ℝ, Tendsto (fun N ↦ βˆ‘ n in Finset.range N, 1 / a n) atTop (𝓝 L)) : βˆƒ k : ℝ, βˆ€ a : β„• β†’ ℝ, pa a β†’ βˆ‘' n : β„•, (n + 1) / (βˆ‘ i in Finset.range (n + 1), a i) ≀ k * βˆ‘' n : β„•, 1 / a n := sorry
bae539d8d621345d
putnam_1999_b3
abbrev putnam_1999_b3_solution : ℝ := sorry -- 3 /-- Let $A=\{(x,y):0\leq x,y<1\}$. For $(x,y)\in A$, let \[S(x,y) = \sum_{\frac{1}{2}\leq \frac{m}{n}\leq 2} x^m y^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\rightarrow (1,1), (x,y)\in A} (1-xy^2)(1-x^2y)S(x,y).\] -/ theorem putnam_1999_b3 (A : Set (ℝ Γ— ℝ)) (hA : A = {xy | 0 ≀ xy.1 ∧ xy.1 < 1 ∧ 0 ≀ xy.2 ∧ xy.2 < 1}) (S : ℝ β†’ ℝ β†’ ℝ) (hS : S = fun x y => βˆ‘' m : β„•, βˆ‘' n : β„•, if (m > 0 ∧ n > 0 ∧ 1/2 ≀ m/n ∧ m/n ≀ 2) then x^m * y^n else 0) : Tendsto (fun xy : (ℝ Γ— ℝ) => (1 - xy.1 * xy.2^2) * (1 - xy.1^2 * xy.2) * (S xy.1 xy.2)) (𝓝[A] ⟨1,1⟩) (𝓝 putnam_1999_b3_solution) := sorry
2ef1bf53e3ce1625
putnam_1991_a4
abbrev putnam_1991_a4_solution : Prop := sorry -- True /-- Does there exist an infinite sequence of closed discs $D_1,D_2,D_3,\dots$ in the plane, with centers $c_1,c_2,c_3,\dots$, respectively, such that \begin{enumerate} \item the $c_i$ have no limit point in the finite plane, \item the sum of the areas of the $D_i$ is finite, and \item every line in the plane intersects at least one of the $D_i$? \end{enumerate} -/ theorem putnam_1991_a4 : (βˆƒ (c : β„• β†’ EuclideanSpace ℝ (Fin 2)) (r : β„• β†’ ℝ), (Β¬ βˆƒ p, MapClusterPt p atTop c) ∧ (Summable <| fun i ↦ r i ^ 2) ∧ (βˆ€ L : AffineSubspace ℝ (EuclideanSpace ℝ (Fin 2)), Module.finrank ℝ L.direction = 1 β†’ βˆƒ i, (↑L ∩ closedBall (c i) (r i)).Nonempty)) ↔ putnam_1991_a4_solution := sorry
7c6dd778d033673e
putnam_1973_a1
theorem putnam_1973_a1 (A B C X Y Z : EuclideanSpace ℝ (Fin 2)) (hnoncol : Β¬Collinear ℝ {A, B, C}) (hX : X ∈ segment ℝ B C) (hY : Y ∈ segment ℝ C A) (hZ : Z ∈ segment ℝ A B) : ((dist B X ≀ dist X C ∧ dist C Y ≀ dist Y A ∧ dist A Z ≀ dist Z B) β†’ volume (convexHull ℝ {X, Y, Z}) β‰₯ (1/4) * volume (convexHull ℝ {A, B, C})) ∧ sInf {volume (convexHull ℝ {A, Z, Y}), volume (convexHull ℝ {B, X, Z}), volume (convexHull ℝ {C, Y, X})} ≀ volume (convexHull ℝ {X, Y, Z}) := sorry
510975ecc30f9bb9
putnam_2004_a4
theorem putnam_2004_a4 (n : β„•) (npos : n > 0) (x : Fin n β†’ ℝ) (avals : β„• β†’ (β„• β†’ Fin n β†’ ℝ) β†’ Prop) (havals : βˆ€ N a, avals N a ↔ βˆ€ (i : Fin N) (j : Fin n), (a i j = -1 ∨ a i j = 0 ∨ a i j = 1)) : βˆƒ (N : β„•) (c : Fin N β†’ β„š) (a : β„• β†’ Fin n β†’ ℝ), avals N a ∧ (∏ i : Fin n, x i) = βˆ‘ i : Fin N, c i * (βˆ‘ j : Fin n, a i j * x j) ^ n := sorry
7cb0a37e7d1b26fc
putnam_2014_a4
abbrev putnam_2014_a4_solution : ℝ := sorry -- 1 / 3 /-- Suppose $X$ is a random variable that takes on only nonnegative integer values, with $E\left[X\right]=1$, $E\left[X^2\right]=2$, and $E\left[X^3\right]=5$. (Here $E\left[Y\right]$ denotes the expectation of the random variable $Y$.) Determine the smallest possible value of the probability of the event $X=0$. -/ theorem putnam_2014_a4 (Xrandvar : (β„• β†’ ℝ) β†’ Prop) (hXrandvar : Xrandvar = (fun X : β„• β†’ ℝ => (βˆ€ n : β„•, X n ∈ Set.Icc 0 1) ∧ βˆ‘' n : β„•, X n = 1)) (E : (β„• β†’ ℝ) β†’ (β„• β†’ ℝ) β†’ ℝ) (hE : E = (fun (X : β„• β†’ ℝ) (f : β„• β†’ ℝ) => βˆ‘' n : β„•, f n * X n)) : sInf {X0 : ℝ | βˆƒ X : β„• β†’ ℝ, Xrandvar X ∧ E X (fun x : β„• => x) = 1 ∧ E X (fun x : β„• => x ^ 2) = 2 ∧ E X (fun x : β„• => x ^ 3) = 5 ∧ X0 = X 0} = putnam_2014_a4_solution := sorry
97876766472c6fe4
putnam_1987_a1
theorem putnam_1987_a1 (A B C D : Set (ℝ Γ— ℝ)) (hA : A = {(x, y) : ℝ Γ— ℝ | x ^ 2 + y ^ 2 β‰  0 ∧ x ^ 2 - y ^ 2 = x / (x ^ 2 + y ^ 2)}) (hB : B = {(x, y) : ℝ Γ— ℝ | x ^ 2 + y ^ 2 β‰  0 ∧ 2 * x * y + y / (x ^ 2 + y ^ 2) = 3}) (hC : C = {(x, y) : ℝ Γ— ℝ | x ^ 3 - 3 * x * y ^ 2 + 3 * y = 1}) (hD : D = {(x, y) : ℝ Γ— ℝ | 3 * x ^ 2 * y - 3 * x - y ^ 3 = 0}) : A ∩ B = C ∩ D := sorry
23254f3dd993dacf
putnam_2012_a1
theorem putnam_2012_a1 (d : Fin 12 β†’ ℝ) (hd : βˆ€ i, d i ∈ Set.Ioo 1 12) : βˆƒ i j k, i β‰  j ∧ i β‰  k ∧ j β‰  k ∧ d k β‰₯ d i ∧ d k β‰₯ d j ∧ (d i) ^ 2 + (d j) ^ 2 > (d k) ^ 2 := sorry
c05b63c7a82a9beb
putnam_2002_a1
abbrev putnam_2002_a1_solution : β„• β†’ β„• β†’ ℝ := sorry -- (fun k n : β„• => (-k) ^ n * (n)!) /-- Let $k$ be a fixed positive integer. The $n$-th derivative of $\frac{1}{x^k-1}$ has the form $\frac{P_n(x)}{(x^k-1)^{n+1}}$ where $P_n(x)$ is a polynomial. Find $P_n(1)$. -/ theorem putnam_2002_a1 (k : β„•) (P : β„• β†’ Polynomial ℝ) (kpos : k > 0) (Pderiv : βˆ€ n x, iteratedDeriv n (fun x' : ℝ => 1 / (x' ^ k - 1)) x = ((P n).eval x) / ((x ^ k - 1) ^ (n + 1))) : βˆ€ n, (P n).eval 1 = putnam_2002_a1_solution k n := sorry
690aeb9eb356d8d6
putnam_1975_a4
abbrev putnam_1975_a4_solution : β„• β†’ Polynomial β„€ := sorry -- fun m => βˆ‘ j in Finset.range ((m - 1) / 2), Polynomial.X ^ (2 * j + 1) /-- Let $n = 2m$, where $m$ is an odd integer greater than 1. Let $\theta = e^{2\pi i/n}$. Expression $(1 - \theta)^{-1}$ explicitly as a polynomial in $\theta$ \[ a_k \theta^k + a_{k-1}\theta^{k-1} + \dots + a_1\theta + a_0\], with integer coefficients $a_i$. -/ theorem putnam_1975_a4 (m : β„•) (hm : Odd m ∧ m > 1) (ΞΈ : β„‚) (hΞΈ : ΞΈ = cexp (2 * Real.pi * I / (2 * m))) : 1/(1 - ΞΈ) = Polynomial.aeval ΞΈ (putnam_1975_a4_solution m) := sorry
42ef33d7d1a63b0f
putnam_1998_b2
abbrev putnam_1998_b2_solution : ℝ β†’ ℝ β†’ ℝ := sorry -- fun a b => if a > b then Real.sqrt (2*a^2 + 2*b^2) else 0 /-- Given a point $(a,b)$ with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at $(a,b)$, one on the $x$-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists. -/ theorem putnam_1998_b2 (a b : ℝ) (hab : 0 < b ∧ b < a) : sInf {d : ℝ | βˆƒ (c : ℝ) (x : ℝ), d = Real.sqrt ((a - c)^2 + (b - 0)^2) + Real.sqrt ((c - x)^2 + (0 - x)^2) + Real.sqrt ((a - x)^2 + (b - x)^2) ∧ Real.sqrt ((a - c)^2 + (b - 0)^2) + Real.sqrt ((c - x)^2 + (0 - x)^2) > Real.sqrt ((a - x)^2 + (b - x)^2) ∧ Real.sqrt ((a - c)^2 + (b - 0)^2) + Real.sqrt ((a - x)^2 + (b - x)^2) > Real.sqrt ((c - x)^2 + (0 - x)^2) ∧ Real.sqrt ((c - x)^2 + (0 - x)^2) + Real.sqrt ((a - x)^2 + (b - x)^2) > Real.sqrt ((a - c)^2 + (b - 0)^2)} = putnam_1998_b2_solution a b := sorry
76a5b677756fc36f
putnam_1965_a4
theorem putnam_1965_a4 {G B : Type*} [Fintype G] [Nonempty G] [Fintype B] [Nonempty B] (dances : G β†’ B β†’ Prop) (h : (Β¬βˆƒ b : B, βˆ€ g : G, dances g b) ∧ βˆ€ g : G, βˆƒ b : B, dances g b) : βˆƒ g h : G, βˆƒ b c : B, dances g b ∧ dances h c ∧ Β¬dances h b ∧ Β¬dances g c := sorry
c3b2cfd8c834a4ea
putnam_1988_b2
abbrev putnam_1988_b2_solution : Prop := sorry -- True /-- Prove or disprove: If $x$ and $y$ are real numbers with $y \geq 0$ and $y(y+1) \leq (x+1)^2$, then $y(y-1) \leq x^2$. -/ theorem putnam_1988_b2 : (βˆ€ x y : ℝ, (y β‰₯ 0 ∧ y * (y + 1) ≀ (x + 1) ^ 2) β†’ (y * (y - 1) ≀ x ^ 2)) ↔ putnam_1988_b2_solution := sorry
700ca10252fd3ed5
putnam_2020_b5
theorem putnam_2020_b5 (z : Fin 4 β†’ β„‚) (hzle1 : βˆ€ n, β€–z nβ€– = 1) (hzne1 : βˆ€ n, z n β‰  1) : 3 - z 0 - z 1 - z 2 - z 3 + (z 0) * (z 1) * (z 2) * (z 3) β‰  0:= sorry
a284f1a6ea86518a
putnam_2015_a5
theorem putnam_2015_a5 (q : β„•) (Nq : β„•) (qodd : Odd q) (qpos : q > 0) (hNq : Nq = {a : β„• | 0 < a ∧ a < (q : ℝ) / 4 ∧ Nat.gcd a q = 1}.encard) : Odd Nq ↔ βˆƒ p k : β„•, q = p ^ k ∧ k > 0 ∧ p.Prime ∧ (p % 8 = 5 ∨ p % 8 = 7) := sorry
267a3f6aa3488410
putnam_2005_a5
abbrev putnam_2005_a5_solution : ℝ := sorry -- Real.pi * (Real.log 2) / 8 /-- Evaluate $\int_0^1 \frac{\ln(x+1)}{x^2+1}\,dx$. -/ theorem putnam_2005_a5 : ∫ x in (0:ℝ)..1, (Real.log (x+1))/(x^2 + 1) = putnam_2005_a5_solution := sorry
3cb3373ce77445e8
putnam_1980_a5
theorem putnam_1980_a5 (P : Polynomial ℝ) (Pnonconst : P.degree > 0) : Set.Finite {x : ℝ | 0 = (∫ t in (0)..x, P.eval t * Real.sin t) ∧ 0 = (∫ t in (0)..x, P.eval t * Real.cos t)} := sorry
4e4d5149a5135c1d
putnam_1990_a5
abbrev putnam_1990_a5_solution : Prop := sorry -- False /-- If $\mathbf{A}$ and $\mathbf{B}$ are square matrices of the same size such that $\mathbf{ABAB}=\mathbf{0}$, does it follow that $\mathbf{BABA}=\mathbf{0}$? -/ theorem putnam_1990_a5 : putnam_1990_a5_solution ↔ (βˆ€ n β‰₯ 1, βˆ€ A B : Matrix (Fin n) (Fin n) ℝ, A * B * A * B = 0 β†’ B * A * B * A = 0) := sorry
d85e9ab4cc895b8e
putnam_1993_a3
theorem putnam_1993_a3 (c : β„• β†’ β„• β†’ β„•) (hc : βˆ€ n β‰₯ 1, βˆ€ m β‰₯ 1, c n m = {f : Finset (Fin n) β†’ Fin m | βˆ€ A B : Finset (Fin n), f (A ∩ B) = min (f A) (f B)}.encard) : βˆ€ n β‰₯ 1, βˆ€ m β‰₯ 1, c n m = βˆ‘' j : Set.Icc 1 m, (j : β„€) ^ n := sorry
e01f69df5f1aec80
putnam_1983_a3
theorem putnam_1983_a3 (p : β„•) (F : β„• β†’ β„•) (poddprime : Odd p ∧ p.Prime) (hF : βˆ€ n : β„•, F n = βˆ‘ i in Finset.range (p - 1), (i + 1) * n ^ i) : βˆ€ a ∈ Finset.Icc 1 p, βˆ€ b ∈ Finset.Icc 1 p, a β‰  b β†’ Β¬(F a ≑ F b [MOD p]) := sorry
066ed7591ccb30cb
putnam_2006_a3
theorem putnam_2006_a3 (x : β„€ β†’ β„€) (hxlo : βˆ€ k : β„€, 0 ≀ k ∧ k ≀ 2006 β†’ x k = k) (hxhi : βˆ€ k : β„€, k β‰₯ 2006 β†’ x (k + 1) = x k + x (k - 2005)) : (βˆƒ i : β„•, i > 0 ∧ βˆ€ j : Finset.range 2005, 2006 ∣ x (i + j)) := sorry
3d5bd9427d1bb632
putnam_2016_a3
abbrev putnam_2016_a3_solution : ℝ := sorry -- 3 * Real.pi / 8 /-- Suppose that $f$ is a function from $\mathbb{R}$ to $\mathbb{R}$ such that \[ f(x) + f\left( 1 - \frac{1}{x} \right) = \arctan x \] for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find \[ \int_0^1 f(x)\,dx. \] -/ theorem putnam_2016_a3 (f : ℝ β†’ ℝ) (hf : βˆ€ x : ℝ, x β‰  0 β†’ f x + f (1 - 1 / x) = arctan x) : (∫ x in (0)..1, f x = putnam_2016_a3_solution) := sorry
a360124adaf6920b
putnam_1971_a6
theorem putnam_1971_a6 (c : ℝ) (hc : βˆ€ n : β„€, n > 0 β†’ βˆƒ m : β„€, (n : ℝ)^c = m) : βˆƒ m : β„€, m β‰₯ 0 ∧ c = m := sorry
494c27a38e1c0165
putnam_2023_b3
abbrev putnam_2023_b3_solution : β„• β†’ ℝ := sorry -- (fun n : β„• ↦ (2 * (n : ℝ) + 2) / 3) /-- A sequence $y_1, y_2, \ldots, y_k$ of real numbers is called zigzag if $k = 1$, or if $y_2 - y_1, y_3 - y_2, \ldots, y_k - y_{k-1}$ are nonzero and alternate in sign. Let $X_1, X_2,\ldots, X_n$ be chosen independently from the uniform distribution on $[0,1]$. Let $a(X_1, X_2, \ldots, X_n)$ be the largest value of $k$ for which there exists an increasing sequence of integers $i_1, i_2, \ldots, i_k$ such that $X_{i_1}, X_{i_2}, \ldots, X_{i_k}$ is zigzag. Find the expected value of $a(X_1, X_2, \ldots, X_n)$ for $n \ge 2$. -/ theorem putnam_2023_b3 (IsZigZag : {k : β„•} β†’ (Fin k β†’ ℝ) β†’ Prop) (IsZigZag_def : βˆ€ (k : β„•) [NeZero k] (y : Fin k β†’ ℝ), IsZigZag y ↔ k = 1 ∨ ((βˆ€ i, i + 1 < k β†’ y (i + 1) β‰  y i)) ∧ (βˆ€ i, i + 2 < k β†’ (y (i + 2) < y (i + 1) ↔ y i < y (i + 1)))) (n : β„•) (hn : 2 ≀ n) (a : (Fin n β†’ Icc (0 : ℝ) 1) β†’ β„•) (ha : βˆ€ x, IsGreatest {k | βˆƒ i : Fin k β†ͺo Fin n, IsZigZag ((↑) ∘ x ∘ i)} (a x)) : 𝔼[(↑) ∘ a] = putnam_2023_b3_solution n := sorry
53a5afe7c805acaa
putnam_1966_a2
theorem putnam_1966_a2 (r : ℝ) (A B C : EuclideanSpace ℝ (Fin 2)) (hABC : Β¬Collinear ℝ {A, B, C}) (a b c p : ℝ) (ha : a = dist B C) (hb : b = dist C A) (hc : c = dist A B) (hp : p = (dist B C + dist C A + dist A B)/2) (hr : βˆƒ I : EuclideanSpace ℝ (Fin 2), (βˆƒ! P : EuclideanSpace ℝ (Fin 2), dist I P = r ∧ Collinear ℝ {P, B, C}) ∧ (βˆƒ! Q : EuclideanSpace ℝ (Fin 2), dist I Q = r ∧ Collinear ℝ {Q, C, A}) ∧ (βˆƒ! R : EuclideanSpace ℝ (Fin 2), dist I R = r ∧ Collinear ℝ {R, A, B}) ∧ (βˆ€ Z : EuclideanSpace ℝ (Fin 2), dist I Z ≀ r β†’ Z ∈ convexHull ℝ {A, B, C})) : 1/(p - a)^2 + 1/(p - b)^2 + 1/(p - c)^2 β‰₯ 1/r^2 := sorry
a32f88b0f5565572
putnam_1976_a2
theorem putnam_1976_a2 (P Q : MvPolynomial (Fin 2) β„€) (hP : P = X 0 ^ 2 * X 1 + X 0 * X 1 ^ 2) (hQ : Q = X 0 ^ 2 + X 0 * X 1 + X 1 ^ 2) (F G : β„• β†’ MvPolynomial (Fin 2) β„€) (hF : βˆ€ n, F n = (X 0 + X 1) ^ n - X 0 ^ n - X 1 ^ n) (hG : βˆ€ n, G n = (X 0 + X 1) ^ n + X 0 ^ n + X 1 ^ n) (n : β„•) (hn : 0 < n) : βˆƒ A : MvPolynomial (Fin 2) β„€, F n = aeval ![P, Q] A ∨ G n = aeval ![P, Q] A := sorry
6ebee7bcee66f89c
putnam_1969_b1
theorem putnam_1969_b1 (n : β„•) (hnpos : n > 0) (hn : 24 ∣ n + 1) : 24 ∣ βˆ‘ d in divisors n, d := sorry
bbdc3aeb399fc02d