Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
256
256
End of preview. Expand in Data Studio

Dataset Card: BOSS-Based Cropped Steganography Dataset

Dataset Overview

  • Name: BOSS-Based Cropped Steganography Dataset (working title)
  • Description: This dataset is a prepared and cropped version of the BOSSbase v1.01 dataset, commonly used in steganography and steganalysis research. Each original 512×512 grayscale image is split into four non-overlapping 256×256 patches to support deep learning experiments with smaller, manageable image sizes. The dataset supports binary classification tasks such as cover vs. stego detection.
  • Purpose: Designed to enable reproducibility of research in image steganalysis.
  • Supported Tasks:
    • Binary classification (cover vs. stego)
    • Steganalysis model evaluation
  • Author: Italo Amaya
  • License: MIT License
  • Intended Use: Academic research only

Dataset Structure

  • Total Images:
    • 20,000 cover images
    • 20,000 WOW stego images
    • 20,000 S-UNIWARD stego images (Each stego set is embedded from the same 20,000 cover images, using different algorithms and randomized keys.)
  • Image Format: .png
  • Image Size: 256×256 pixels
  • Color: Grayscale (1 channel)
  • Directory Layout:
    cropdataset/
    ├── cover/
    └── stego/
        ├── S-UNIWARD/
        │   └── 0.4bpp/
        │       └── stego/
        └── WOW/
            └── 0.4bpp/
                └── stego/
    
  • Labels: Not explicitly stored — labels should be inferred during data loading (cover = 0, stego = 1)

Data Generation Process

  • Original Dataset: BOSSbase v1.01
  • Cropping Script (Python):
    from PIL import Image
    import os
    from tqdm import tqdm
    
    def crop_images(input_folder, output_folder, patch_size=(256, 256)):
        os.makedirs(output_folder, exist_ok=True)
        for filename in tqdm(os.listdir(input_folder), desc="Cropping"):
            try:
                input_path = os.path.join(input_folder, filename)
                if os.path.isfile(input_path):
                    img = Image.open(input_path)
                    if img.size == (512, 512):
                        w, h = patch_size
                        patches = {
                            "top_left": img.crop((0, 0, w, h)),
                            "top_right": img.crop((512-w, 0, 512, h)),
                            "bottom_left": img.crop((0, 512-h, w, 512)),
                            "bottom_right": img.crop((512-w, 512-h, 512, 512)),
                        }
                        for key, patch in patches.items():
                            patch.save(os.path.join(output_folder, f"{os.path.splitext(filename)[0]}_{key}.png"))
            except Exception as e:
                print(f"Error processing {filename}: {e}")
    
  • Embedding Tools:

    The embedding was done using random keys and as such this dataset is a random key dataset

    • WOW
    • S-UNIWARD Both are official C++ implementations from the University of Binghamton.
  • Embedding Parameters:
    • Randomized keys per image
    • 0.4 bits per pixel (bpp)

Preprocessing & Transformations

  • Cropping: Non-overlapping 256×256 patches from 512×512 originals
  • Augmentation: None
  • Normalization: None — images retain original pixel value ranges

Citation and Attribution

  • GitHub Repository: [Link to be added once public]
  • Associated Paper: [Placeholder for paper title or DOI] Please cite this work when using the dataset.
Downloads last month
336