license: cc-by-4.0
task_categories:
- text-to-speech
language:
- en
size_categories:
- 10K<n<100K
dataset_info:
features:
- name: text_normalized
dtype: string
- name: text_original
dtype: string
- name: speaker_id
dtype: string
- name: path
dtype: string
- name: chapter_id
dtype: string
- name: id
dtype: string
- name: codes
sequence:
sequence: int64
splits:
- name: dev.clean
num_bytes: 28485381
num_examples: 5736
- name: test.clean
num_bytes: 27017042
num_examples: 4837
- name: train.clean.100
num_bytes: 170451359
num_examples: 33232
- name: train.clean.360
num_bytes: 605899762
num_examples: 116426
download_size: 157338197
dataset_size: 831853544
configs:
- config_name: default
data_files:
- split: dev.clean
path: data/dev.clean-*
- split: test.clean
path: data/test.clean-*
- split: train.clean.100
path: data/train.clean.100-*
- split: train.clean.360
path: data/train.clean.360-*
LibriTTS-R Mimi encoding
This dataset converts all audio in the dev.clean
, test.clean
, train.100
and train.360
splits of the LibriTTS-R dataset from waveforms to tokens in Kyutai's Mimi neural codec.
These tokens are intended as targets for DualAR audio models, but also allow you to simply download all audio in ~50-100x less space, if you're comfortable decoding later on with rustymimi or Transformers.
This does NOT contain the original audio, please use the regular LibriTTS-R for this. I am not actively maintaining this dataset as it's being used for a personal project; please do not expect any updates or assistance. Sorry!
If you want to decode audio to WAV, here's a snippet with HF Transformers:
from transformers import MimiModel, AutoFeatureExtractor
from datasets import load_dataset
# If using Jupyter
from IPython.display import Audio, display
device="cuda"
feature_extractor = AutoFeatureExtractor.from_pretrained("kyutai/mimi")
model = MimiModel.from_pretrained("kyutai/mimi")
model = model.to(device)
dataset = load_dataset("jkeisling/libritts-r-mimi")
dataset = dataset.with_format("torch")
codes = dataset["dev.clean"][0]["codes"].to(device)
# decode expects 3d (bsz, codebook_len=8, seqlen) tensor
out_pcm = model.decode(codes.unsqueeze(0))
audio_data = out_pcm.audio_values[0].detach().to("cpu").numpy()
# If using Jupyter
display(Audio(audio_data, rate=24000, autoplay=False))
Thanks to MythicInfinity, Koizumi et al. 2023 (LibriTTS-R cleaning and audio enhancement), Zen et al. 2019 (LibriTTS), and the original narrators of the corpus.
Original LibriTTS-R README below
LibriTTS-R [1] is a sound quality improved version of the LibriTTS corpus (http://www.openslr.org/60/) which is a multi-speaker English corpus of approximately 585 hours of read English speech at 24kHz sampling rate, published in 2019.
Overview
This is the LibriTTS-R dataset, adapted for the datasets
library.
Usage
Splits
There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):
- dev.clean
- dev.other
- test.clean
- test.other
- train.clean.100
- train.clean.360
- train.other.500
Configurations
There are 3 configurations, each which limits the splits the load_dataset()
function will download.
The default configuration is "all".
- "dev": only the "dev.clean" split (good for testing the dataset quickly)
- "clean": contains only "clean" splits
- "other": contains only "other" splits
- "all": contains only "all" splits
Example
Loading the clean
config with only the train.clean.360
split.
load_dataset("blabble-io/libritts_r", "clean", split="train.clean.100")
Streaming is also supported.
load_dataset("blabble-io/libritts_r", streaming=True)
Columns
{
"audio": datasets.Audio(sampling_rate=24_000),
"text_normalized": datasets.Value("string"),
"text_original": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"chapter_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
Example Row
{
'audio': {
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'array': ...,
'sampling_rate': 24000
},
'text_normalized': 'How quickly he disappeared!"',
'text_original': 'How quickly he disappeared!"',
'speaker_id': '3081',
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'chapter_id': '166546',
'id': '3081_166546_000028_000002'
}
Dataset Details
Dataset Description
- License: CC BY 4.0
Dataset Sources [optional]
- Homepage: https://www.openslr.org/141/
- Paper: https://arxiv.org/abs/2305.18802
Citation
@ARTICLE{Koizumi2023-hs,
title = "{LibriTTS-R}: A restored multi-speaker text-to-speech corpus",
author = "Koizumi, Yuma and Zen, Heiga and Karita, Shigeki and Ding,
Yifan and Yatabe, Kohei and Morioka, Nobuyuki and Bacchiani,
Michiel and Zhang, Yu and Han, Wei and Bapna, Ankur",
abstract = "This paper introduces a new speech dataset called
``LibriTTS-R'' designed for text-to-speech (TTS) use. It is
derived by applying speech restoration to the LibriTTS
corpus, which consists of 585 hours of speech data at 24 kHz
sampling rate from 2,456 speakers and the corresponding
texts. The constituent samples of LibriTTS-R are identical
to those of LibriTTS, with only the sound quality improved.
Experimental results show that the LibriTTS-R ground-truth
samples showed significantly improved sound quality compared
to those in LibriTTS. In addition, neural end-to-end TTS
trained with LibriTTS-R achieved speech naturalness on par
with that of the ground-truth samples. The corpus is freely
available for download from
\textbackslashurl\{http://www.openslr.org/141/\}.",
month = may,
year = 2023,
copyright = "http://creativecommons.org/licenses/by-nc-nd/4.0/",
archivePrefix = "arXiv",
primaryClass = "eess.AS",
eprint = "2305.18802"
}