kernel_id
stringclasses
4 values
code
stringlengths
1
1.59k
output
stringlengths
0
70.5M
execution_time
float64
0
60
memory_bytes
int64
50.7M
10.7B
runtime_variables
dict
hash_index
stringlengths
32
32
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']].fillna("", inplace=True) train_features.fillna(0, inplace=True) # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-cf90c8cf9350>:18: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before',
0.035854
423,931,904
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 2932213, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
930fcb0fa93672d2f35649c089bbdf16
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']].fillna("") train_features.fillna(0, inplace=True) # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.031981
425,000,960
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
b3bed2526c57adb0dc00a66f89f0536e
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.006296
425,000,960
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f8409e835d8d3d83342b61d5673ca53a
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']].fillna("NONE") train_features.fillna(0, inplace=True) # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.125191
427,073,536
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
84349ba3b31f19f6c89a1d08acaff008
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.009167
427,073,536
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
03a9cdf9da01c25f2b33ae931c1b3a54
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.007346
427,073,536
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
41a85aac4b313eb55ebe3707e8fc9f24
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.007011
426,913,792
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
5aa9b2dd85e349029134435715cccf67
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.007081
426,913,792
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
826704869f9edda2b8dba94fcd15311b
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"]
Out[1]: 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object 0 [l_cols = ['user_id','movie_id','rating']] 1 [l.head()] 2 [r.head()] 3 [movies = pd.merge(l,r)] 4 [movies.head()] ... 5828 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5829 [image_data_shared = srm.transform(image_data)] 5830 [accuracy = np.zeros((subjects,))] 5831 [plot_confusion_matrix(cm, title="Confusion ma... 5832 0 Name: code_line_after, Length: 5833, dtype: object
0.007041
426,913,792
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
cb53c5e5297fbfeae6a7860ab5228b5d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features["code_line_after"].sample(20)
Out[1]: 2204 [model = sm.tsa.statespace.SARIMAX(data2.AUDTH... 2987 [HP_embed_size = 128] 3214 [stations = four_hour.groupby(by =['station', ... 867 [wholedf.Location = wholedf.Location.str.lower()] 4382 [structure = pd.read_csv("kaggle/structure.csv")] 2133 [seventh_data_frame.loc["735 Dolores St":"735 ... 3611 [adoption_by_year = df.groupby(['Year', 'Month... 1161 [print (df3)] 1951 [x_test_data_rows = (x_test_data_rows - x_trai... 5774 [clean_hospital_read_df.dropna(subset=['Excess... 3542 [final_dataset[final_dataset.isnull().any(axis... 2010 ['''] 4506 [(x_train, y_train), (x_test, y_test) = imdb.l... 1771 [slope, intercept, r_value, p_value, std_err =... 2595 [train_y_predicted = model.predict(X_important... 5539 0 4929 [support = df.FinanciallySupporting.value_coun... 3709 [sequence_autoencoder = load_model_w_weights('... 5595 [knn.fit(X_train_std, y_train)] 3743 [global_clusterings = ccal.read_gct(RESULTS_DI... Name: code_line_after, dtype: object 2204 [model = sm.tsa.statespace.SARIMAX(data2.AUDTH... 2987 [HP_embed_size = 128] 3214 [stations = four_hour.groupby(by =['station', ... 867 [wholedf.Location = wholedf.Location.str.lower()] 4382 [structure = pd.read_csv("kaggle/structure.csv")] 2133 [seventh_data_frame.loc["735 Dolores St":"735 ... 3611 [adoption_by_year = df.groupby(['Year', 'Month... 1161 [print (df3)] 1951 [x_test_data_rows = (x_test_data_rows - x_trai... 5774 [clean_hospital_read_df.dropna(subset=['Excess... 3542 [final_dataset[final_dataset.isnull().any(axis... 2010 ['''] 4506 [(x_train, y_train), (x_test, y_test) = imdb.l... 1771 [slope, intercept, r_value, p_value, std_err =... 2595 [train_y_predicted = model.predict(X_important... 5539 0 4929 [support = df.FinanciallySupporting.value_coun... 3709 [sequence_autoencoder = load_model_w_weights('... 5595 [knn.fit(X_train_std, y_train)] 3743 [global_clusterings = ccal.read_gct(RESULTS_DI... Name: code_line_after, dtype: object
0.007311
426,913,792
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
e0516f81958bc4ba14af4ac461e941ae
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.005225
426,913,792
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
2e18f82a3f8d840cd242f99dd0a2a777
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading']].fillna("NONE") train_features.fillna(0, inplace=True) # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.035156
425,603,072
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
79f45234000025e72ebc061b01165766
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) # train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']].fillna("NONE") train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0].loc["text"] = "NONE" # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-9de7af673fb3>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['text'] == 0].loc["text"] = "NONE"
0.033963
425,865,216
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
be7fb8901bdb5a67114fb6c185ef7ee9
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) # train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']].fillna("NONE") train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]["text"] = "NONE" # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.034389
425,865,216
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
6f5990f8fe349e40315d78d9436bfaf0
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.005465
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
60cc2494e30dcac39faa6498efa3a27e
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.005714
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
fc9cc5979139c9b34be811451f5b82eb
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.004063
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
36e4086f93e501ebea12e08a6bb9f3be
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.003843
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
2a3098b82569157f8982165eab67f3b5
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.003975
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
541e5bbe62e6387685dd9f80de47682a
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.003735
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
592f396984759084f34d749a29f53d8d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["code_line_after"] == "NONE").sum()
Out[1]: 0 0
0.003717
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
cfaa94d8cddd46f443e28a2e08928bbc
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"] == "NONE").sum()
Out[1]: 0 0
0.00569
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
ee58e15ce905be0874c9476412c8bc15
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) # train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']] = train_features[['text', 'comment', 'code_line_before', # 'code_line_after', 'markdown_heading']].fillna("NONE") train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.121225
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
bf86b936edc25768b90b9ee835c0e90c
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"] == "NONE")
Out[1]: 0 False 1 False 2 False 3 False 4 False ... 5828 False 5829 False 5830 False 5831 False 5832 False Name: text, Length: 5833, dtype: bool 0 False 1 False 2 False 3 False 4 False ... 5828 False 5829 False 5830 False 5831 False 5832 False Name: text, Length: 5833, dtype: bool
0.006726
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
c1f4311f89893396f4a6cfccd24f30d9
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"])
Out[1]: 0 [import pandas as pd, import numpy as np] 1 [l_cols = ['user_id','movie_id','rating'], r_c... 2 [l.head()] 3 [r.head()] 4 [movies = pd.merge(l,r)] ... 5828 [plot_confusion_matrix(cm, title="Confusion ma... 5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5830 [image_data_shared = srm.transform(image_data)... 5831 [accuracy = np.zeros((subjects,)), cm = [None]... 5832 [plot_confusion_matrix(cm, title="Confusion ma... Name: text, Length: 5833, dtype: object 0 [import pandas as pd, import numpy as np] 1 [l_cols = ['user_id','movie_id','rating'], r_c... 2 [l.head()] 3 [r.head()] 4 [movies = pd.merge(l,r)] ... 5828 [plot_confusion_matrix(cm, title="Confusion ma... 5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10... 5830 [image_data_shared = srm.transform(image_data)... 5831 [accuracy = np.zeros((subjects,)), cm = [None]... 5832 [plot_confusion_matrix(cm, title="Confusion ma... Name: text, Length: 5833, dtype: object
0.007192
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
8bf224f76cd3d51abae95bd1cceb3f85
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"]).sample(20)
Out[1]: 1601 [color_matrix = ops.reravel(merged[['C']], img... 2845 [import os, import numpy as np, import pandas ... 3367 [lda = models.LdaModel(corpus=corpus, num_topi... 685 [diff(f, x)] 3154 [train_ids = [], val_ids = [], for dev_index, ... 4672 [train_df.ix[train_df['build_year']==0,'build_... 3930 [session.close()] 4150 [ax = sns.boxplot(x=df['num_char'], orient='v'... 1329 [predictions[0]] 1375 [import matplotlib.pyplot as plt, %matplotlib ... 627 [db = sqlite3.connect('finalproject.db'), df2 ... 2322 [tf.__version__] 5333 [arr] 3817 [layer_fc2 = new_fc_layer(input=layer_fc1,, nu... 1138 [fig, axes = plt.subplots(nrows=2, ncols=10, s... 5225 [counts_all = pab_all[2016][['pitcher_name',, ... 1431 [modules = modules.rename(columns = {'code':'M... 2959 [plt.scatter(x=games['Critic_Score'], y=games[... 749 [x=mnist.train.images, y=mnist.train.labels] 2163 [input = model.layers[0].input, output = model... Name: text, dtype: object 1601 [color_matrix = ops.reravel(merged[['C']], img... 2845 [import os, import numpy as np, import pandas ... 3367 [lda = models.LdaModel(corpus=corpus, num_topi... 685 [diff(f, x)] 3154 [train_ids = [], val_ids = [], for dev_index, ... 4672 [train_df.ix[train_df['build_year']==0,'build_... 3930 [session.close()] 4150 [ax = sns.boxplot(x=df['num_char'], orient='v'... 1329 [predictions[0]] 1375 [import matplotlib.pyplot as plt, %matplotlib ... 627 [db = sqlite3.connect('finalproject.db'), df2 ... 2322 [tf.__version__] 5333 [arr] 3817 [layer_fc2 = new_fc_layer(input=layer_fc1,, nu... 1138 [fig, axes = plt.subplots(nrows=2, ncols=10, s... 5225 [counts_all = pab_all[2016][['pitcher_name',, ... 1431 [modules = modules.rename(columns = {'code':'M... 2959 [plt.scatter(x=games['Critic_Score'], y=games[... 749 [x=mnist.train.images, y=mnist.train.labels] 2163 [input = model.layers[0].input, output = model... Name: text, dtype: object
0.007905
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
883c7afbb5a4a2397247fd856e50a470
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"]).sample(40)
Out[1]: 1136 [sess = tf.Session()] 5813 [def load_data_frame(file_path, column_separat... 3018 [data['MSSubClass'].head()] 2922 [simple_weights = regression_gradient_descent(... 3064 [prediccions_optimized=xgb_optimized.predict(t... 5517 [import time, print ("fitting the mode"), star... 2471 [from sklearn.model_selection import KFold, St... 5431 [run['numFaces'] = (run.iloc[0][confidence_col... 1392 [output_data = pd.DataFrame(columns=wifi_data.... 637 [1/2+1/3] 1044 [def best_mean(s):, """The constant that minim... 4052 [s_split = df_step1['3rd step'].str.split('&')] 3800 [def plot_images(images, cls_true, cls_pred=No... 656 [integrate(exp(x),x)] 2373 [print(survival_rate_and_total(titanic.groupby... 5805 [mseRgScore=mean_squared_error(y_test,y_RgPred)] 954 [def content_loss(content, combination):, retu... 2241 [Paragraph_DF = pd.DataFrame(columns = ['Numbe... 972 [def print_cv(model, X, y, cv=10):, scores = c... 1905 [def showImage(img):, plt.imshow(img), plt.sho... 3331 [with tf.Session() as sess:, saver.restore(ses... 211 [df.values.shape] 4271 [plt.imshow(np.reshape(ds.X[0],(28,28)))] 1029 [plt.rcParams["figure.figsize"] = (15, 10), pd... 494 [data = nlp.proc_text(), data.head()] 742 [def generate_train(data,batch_size = 128):, b... 1668 [best_features = [], for i in indices[:5]:, be... 2615 [precision_score(y_test, y_pred, average='micr... 4488 [df['prediction_max'] = None, for i in range(d... 737 [aapl = data.get_data_yahoo('AAPL',, start=dat... 1746 [address_lengths = address_lengths[address_len... 1338 [im = ndimage.imread("../data/test/" + test_ba... 648 [from sympy.abc import a,b,c] 4021 [clf.predict(joe.drop(['subject'],axis=1))] 5176 [pabD = {}, for year in (2016,2017):, pabD[yea... 1048 [sub.DATE = pd.to_datetime(sub.DATE)] 265 [show_n_images = 25, """, DON'T MODIFY ANYTHIN... 632 [df2.describe()] 333 [jeopardy.head()] 5577 [print('links: ', links_df.columns.sort_value... Name: text, dtype: object 1136 [sess = tf.Session()] 5813 [def load_data_frame(file_path, column_separat... 3018 [data['MSSubClass'].head()] 2922 [simple_weights = regression_gradient_descent(... 3064 [prediccions_optimized=xgb_optimized.predict(t... 5517 [import time, print ("fitting the mode"), star... 2471 [from sklearn.model_selection import KFold, St... 5431 [run['numFaces'] = (run.iloc[0][confidence_col... 1392 [output_data = pd.DataFrame(columns=wifi_data.... 637 [1/2+1/3] 1044 [def best_mean(s):, """The constant that minim... 4052 [s_split = df_step1['3rd step'].str.split('&')] 3800 [def plot_images(images, cls_true, cls_pred=No... 656 [integrate(exp(x),x)] 2373 [print(survival_rate_and_total(titanic.groupby... 5805 [mseRgScore=mean_squared_error(y_test,y_RgPred)] 954 [def content_loss(content, combination):, retu... 2241 [Paragraph_DF = pd.DataFrame(columns = ['Numbe... 972 [def print_cv(model, X, y, cv=10):, scores = c... 1905 [def showImage(img):, plt.imshow(img), plt.sho... 3331 [with tf.Session() as sess:, saver.restore(ses... 211 [df.values.shape] 4271 [plt.imshow(np.reshape(ds.X[0],(28,28)))] 1029 [plt.rcParams["figure.figsize"] = (15, 10), pd... 494 [data = nlp.proc_text(), data.head()] 742 [def generate_train(data,batch_size = 128):, b... 1668 [best_features = [], for i in indices[:5]:, be... 2615 [precision_score(y_test, y_pred, average='micr... 4488 [df['prediction_max'] = None, for i in range(d... 737 [aapl = data.get_data_yahoo('AAPL',, start=dat... 1746 [address_lengths = address_lengths[address_len... 1338 [im = ndimage.imread("../data/test/" + test_ba... 648 [from sympy.abc import a,b,c] 4021 [clf.predict(joe.drop(['subject'],axis=1))] 5176 [pabD = {}, for year in (2016,2017):, pabD[yea... 1048 [sub.DATE = pd.to_datetime(sub.DATE)] 265 [show_n_images = 25, """, DON'T MODIFY ANYTHIN... 632 [df2.describe()] 333 [jeopardy.head()] 5577 [print('links: ', links_df.columns.sort_value... Name: text, dtype: object
0.009248
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
580138b1b2cede66ed42ac12c01eaf3b
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"]).sample(100)
Out[1]: 152 [lb_ar = lbview.map_async(high_variated_work, ... 4119 [from __future__ import division, import panda... 2432 [dist_df = pd.DataFrame(dist, columns=df.Disti... 2609 [y_pred = clf.predict(X_test)] 1048 [sub.DATE = pd.to_datetime(sub.DATE)] ... 5529 [L = 300, W1 = tf.Variable(tf.truncated_normal... 5696 [df.columns] 4552 [nsample = 5000, bb = np.zeros(4), m = np.eye(... 3940 [optimize(num_iterations=100)] 2353 [def plot_confusion_matrix(cls_pred):, cls_tru... Name: text, Length: 100, dtype: object 152 [lb_ar = lbview.map_async(high_variated_work, ... 4119 [from __future__ import division, import panda... 2432 [dist_df = pd.DataFrame(dist, columns=df.Disti... 2609 [y_pred = clf.predict(X_test)] 1048 [sub.DATE = pd.to_datetime(sub.DATE)] ... 5529 [L = 300, W1 = tf.Variable(tf.truncated_normal... 5696 [df.columns] 4552 [nsample = 5000, bb = np.zeros(4), m = np.eye(... 3940 [optimize(num_iterations=100)] 2353 [def plot_confusion_matrix(cls_pred):, cls_tru... Name: text, Length: 100, dtype: object
0.007152
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
662ace1ae5f90acf79e8e65e851eb8e9
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"]).sample(100)[0]
--------------------------------------------------------------------------- KeyError Traceback (most recent call last) File /usr/local/lib/python3.9/site-packages/pandas/core/indexes/base.py:3805, in Index.get_loc(self, key)  3804 try: -> 3805 return self._engine.get_loc(casted_key)  3806 except KeyError as err: File index.pyx:167, in pandas._libs.index.IndexEngine.get_loc() File index.pyx:196, in pandas._libs.index.IndexEngine.get_loc() File pandas/_libs/hashtable_class_helper.pxi:2606, in pandas._libs.hashtable.Int64HashTable.get_item() File pandas/_libs/hashtable_class_helper.pxi:2630, in pandas._libs.hashtable.Int64HashTable.get_item() KeyError: 0 The above exception was the direct cause of the following exception: KeyError Traceback (most recent call last) File <ipython-input-1-b5c224072d3e>:1 ----> 1 (train_features["text"]).sample(100)[0] File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:1121, in Series.__getitem__(self, key)  1118 return self._values[key]  1120 elif key_is_scalar: -> 1121 return self._get_value(key)  1123 # Convert generator to list before going through hashable part  1124 # (We will iterate through the generator there to check for slices)  1125 if is_iterator(key): File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:1237, in Series._get_value(self, label, takeable)  1234 return self._values[label]  1236 # Similar to Index.get_value, but we do not fall back to positional -> 1237 loc = self.index.get_loc(label)  1239 if is_integer(loc):  1240 return self._values[loc] File /usr/local/lib/python3.9/site-packages/pandas/core/indexes/base.py:3812, in Index.get_loc(self, key)  3807 if isinstance(casted_key, slice) or (  3808 isinstance(casted_key, abc.Iterable)  3809 and any(isinstance(x, slice) for x in casted_key)  3810 ):  3811 raise InvalidIndexError(key) -> 3812 raise KeyError(key) from err  3813 except TypeError:  3814 # If we have a listlike key, _check_indexing_error will raise  3815 # InvalidIndexError. Otherwise we fall through and re-raise  3816 # the TypeError.  3817 self._check_indexing_error(key) KeyError: 0 Error: 0
0.067018
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
48701d10206412e4309e92903550408d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
(train_features["text"]).sample(100).iloc[0]
Out[1]: ['df=pd.read_csv("Data.csv")'] ['df=pd.read_csv("Data.csv")']
0.006033
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
dd85ce2ec7a5d97cefcdb0f53f949851
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: list <class 'list'>
0.007368
425,996,288
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 541424, "type": "Series", "value": "0 0\n1 [import numpy as np]\n2 [r = pd.read_csv('u.item', sep='|', names=r_co...\n3 [l.head()]\n4 [r.head()]\n ... \n5828 [plt.show()]\n5829 [print(\"The average accuracy among all subject...\n5830 [srm.fit(movie_data)]\n5831 [image_data_shared[subject] = stats.zscore(ima...\n5832 [cm[subject] = cm[subject].astype('float') / c...\nName: code_line_before, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
0b7af3607358a51b919fa4bd11ba604d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) text.apply(lambda x: " ".join(x))
Out[1]: 0 import pandas as pd import numpy as np 1 l_cols = ['user_id','movie_id','rating'] r_col... 2 l.head() 3 r.head() 4 movies = pd.merge(l,r) ... 5828 plot_confusion_matrix(cm, title="Confusion mat... 5829 srm = brainiak.funcalign.srm.DetSRM(n_iter=10,... 5830 image_data_shared = srm.transform(image_data) ... 5831 accuracy = np.zeros((subjects,)) cm = [None] *... 5832 plot_confusion_matrix(cm, title="Confusion mat... Name: text, Length: 5833, dtype: object 0 import pandas as pd import numpy as np 1 l_cols = ['user_id','movie_id','rating'] r_col... 2 l.head() 3 r.head() 4 movies = pd.merge(l,r) ... 5828 plot_confusion_matrix(cm, title="Confusion mat... 5829 srm = brainiak.funcalign.srm.DetSRM(n_iter=10,... 5830 image_data_shared = srm.transform(image_data) ... 5831 accuracy = np.zeros((subjects,)) cm = [None] *... 5832 plot_confusion_matrix(cm, title="Confusion mat... Name: text, Length: 5833, dtype: object
0.008744
423,636,992
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
59216771c3032a1226d46620dcb42823
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) text.apply(lambda x: " ".join(x), inplace=True)
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) File <ipython-input-1-703747872e17>:8  4 text = train_features["text"]  5 # vectorizer = TfidfVectorizer()  6 # X = vectorizer.fit_transform(corpus) ----> 8 text.apply(lambda x: " ".join(x), inplace=True) File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)  4789 def apply(  4790 self,  4791 func: AggFuncType,  (...)  4796 **kwargs,  4797 ) -> DataFrame | Series:  4798  """  4799  Invoke function on values of Series.  4800  (...)  4915  dtype: float64  4916  """ -> 4917 return SeriesApply(  4918  self,  4919  func,  4920  convert_dtype=convert_dtype,  4921  by_row=by_row,  4922  args=args,  4923  kwargs=kwargs,  4924  ).apply() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427, in SeriesApply.apply(self)  1424 return self.apply_compat()  1426 # self.func is Callable -> 1427 return self.apply_standard() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507, in SeriesApply.apply_standard(self)  1501 # row-wise access  1502 # apply doesn't have a `na_action` keyword and for backward compat reasons  1503 # we need to give `na_action="ignore"` for categorical data.  1504 # TODO: remove the `na_action="ignore"` when that default has been changed in  1505 # Categorical (GH51645).  1506 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None -> 1507 mapped = obj._map_values(  1508  mapper=curried, na_action=action, convert=self.convert_dtype  1509 )  1511 if len(mapped) and isinstance(mapped[0], ABCSeries):  1512 # GH#43986 Need to do list(mapped) in order to get treated as nested  1513 # See also GH#25959 regarding EA support  1514 return obj._constructor_expanddim(list(mapped), index=obj.index) File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921, in IndexOpsMixin._map_values(self, mapper, na_action, convert)  918 if isinstance(arr, ExtensionArray):  919 return arr.map(mapper, na_action=na_action) --> 921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert) File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743, in map_array(arr, mapper, na_action, convert)  1741 values = arr.astype(object, copy=False)  1742 if na_action is None: -> 1743 return lib.map_infer(values, mapper, convert=convert)  1744 else:  1745 return lib.map_infer_mask(  1746 values, mapper, mask=isna(values).view(np.uint8), convert=convert  1747 ) File lib.pyx:2972, in pandas._libs.lib.map_infer() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1496, in SeriesApply.apply_standard.<locals>.curried(x)  1495 def curried(x): -> 1496 return func(x, *self.args, **self.kwargs) TypeError: <lambda>() got an unexpected keyword argument 'inplace' Error: <lambda>() got an unexpected keyword argument 'inplace'
0.040837
423,636,992
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
265719c12c90a38777b4f664a508ff06
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) text.apply(lambda x: " ".join(x))
Out[1]: 0 import pandas as pd import numpy as np 1 l_cols = ['user_id','movie_id','rating'] r_col... 2 l.head() 3 r.head() 4 movies = pd.merge(l,r) ... 5828 plot_confusion_matrix(cm, title="Confusion mat... 5829 srm = brainiak.funcalign.srm.DetSRM(n_iter=10,... 5830 image_data_shared = srm.transform(image_data) ... 5831 accuracy = np.zeros((subjects,)) cm = [None] *... 5832 plot_confusion_matrix(cm, title="Confusion mat... Name: text, Length: 5833, dtype: object 0 import pandas as pd import numpy as np 1 l_cols = ['user_id','movie_id','rating'] r_col... 2 l.head() 3 r.head() 4 movies = pd.merge(l,r) ... 5828 plot_confusion_matrix(cm, title="Confusion mat... 5829 srm = brainiak.funcalign.srm.DetSRM(n_iter=10,... 5830 image_data_shared = srm.transform(image_data) ... 5831 accuracy = np.zeros((subjects,)) cm = [None] *... 5832 plot_confusion_matrix(cm, title="Confusion mat... Name: text, Length: 5833, dtype: object
0.006837
423,636,992
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
380072257da6ad96958a5e29b6a0f2b6
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = text.apply(lambda x: " ".join(x))
0.006622
423,636,992
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
d90ed02bd47f321765792f4f7015ee34
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer vectorizer = TfidfVectorizer() vectorizer.fit_transform(train_features["text"])
Out[1]: <5833x13737 sparse matrix of type '<class 'numpy.float64'>' with 84595 stored elements in Compressed Sparse Row format> <5833x13737 sparse matrix of type '<class 'numpy.float64'>' with 84595 stored elements in Compressed Sparse Row format>
0.075474
423,636,992
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 2)\t0.5773502691896258\n (0, 1)\t0.5773502691896258\n (0, 0)\t0.5773502691896258" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
42ce3358d02a80e997bff4ca1e22e3e2
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) vectorizer.fit_transform(train_features["text"])
Out[1]: <5833x13737 sparse matrix of type '<class 'numpy.float64'>' with 84595 stored elements in Compressed Sparse Row format> <5833x13737 sparse matrix of type '<class 'numpy.float64'>' with 84595 stored elements in Compressed Sparse Row format>
0.106758
423,768,064
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": null, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": null, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
5fddebe62614c4293b970c7089cad591
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2))
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File <ipython-input-1-deae97751859>:12  8 X = scipy.sparse.csr_matrix(validation_features[train_columns].values)  10 X2 = vectorizer.fit_transform(train_features["text"]) ---> 12 X3 = hstack((X, X2)) File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:733, in hstack(blocks, format, dtype)  731 return _block([blocks], format, dtype)  732 else: --> 733 return _block([blocks], format, dtype, return_spmatrix=True) File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:908, in _block(blocks, format, dtype, return_spmatrix)  903 if (format in (None, 'csr') and  904 all(issparse(b) and b.format == 'csr' for b in blocks.flat)  905 ):  906 if N > 1:  907 # stack along columns (axis 1): must have shape (M, 1) --> 908 blocks = [[_stack_along_minor_axis(blocks[b, :], 1)] for b in range(M)]  909 blocks = np.asarray(blocks, dtype='object')  911 # stack along rows (axis 0): File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:908, in <listcomp>(.0)  903 if (format in (None, 'csr') and  904 all(issparse(b) and b.format == 'csr' for b in blocks.flat)  905 ):  906 if N > 1:  907 # stack along columns (axis 1): must have shape (M, 1) --> 908 blocks = [[_stack_along_minor_axis(blocks[b, :], 1)] for b in range(M)]  909 blocks = np.asarray(blocks, dtype='object')  911 # stack along rows (axis 0): File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:648, in _stack_along_minor_axis(blocks, axis)  646 other_axis_dims = {b.shape[other_axis] for b in blocks}  647 if len(other_axis_dims) > 1: --> 648 raise ValueError(f'Mismatching dimensions along axis {other_axis}: '  649 f'{other_axis_dims}')  650 constant_dim, = other_axis_dims  652 # Do the stacking ValueError: Mismatching dimensions along axis 0: {5833, 1927} Error: Mismatching dimensions along axis 0: {5833, 1927}
0.140809
423,899,136
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": null, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
6c1e3ed1bff48271190954b67b93acd0
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = Vstack((X, X2))
--------------------------------------------------------------------------- NameError Traceback (most recent call last) File <ipython-input-1-c08ef251fbe7>:12  8 X = scipy.sparse.csr_matrix(validation_features[train_columns].values)  10 X2 = vectorizer.fit_transform(train_features["text"]) ---> 12 X3 = Vstack((X, X2)) NameError: name 'Vstack' is not defined Error: name 'Vstack' is not defined
0.082458
425,340,928
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
b987b43218d485ad9d18a2f180fa1af3
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = vstack((X, X2))
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File <ipython-input-1-556d4000963d>:12  8 X = scipy.sparse.csr_matrix(validation_features[train_columns].values)  10 X2 = vectorizer.fit_transform(train_features["text"]) ---> 12 X3 = vstack((X, X2)) File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:781, in vstack(blocks, format, dtype)  779 return _block([[b] for b in blocks], format, dtype)  780 else: --> 781 return _block([[b] for b in blocks], format, dtype, return_spmatrix=True) File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:912, in _block(blocks, format, dtype, return_spmatrix)  909 blocks = np.asarray(blocks, dtype='object')  911 # stack along rows (axis 0): --> 912 A = _compressed_sparse_stack(blocks[:, 0], 0, return_spmatrix)  913 if dtype is not None:  914 A = A.astype(dtype) File /usr/local/lib/python3.9/site-packages/scipy/sparse/_construct.py:606, in _compressed_sparse_stack(blocks, axis, return_spmatrix)  604 for b in blocks:  605 if b.shape[other_axis] != constant_dim: --> 606 raise ValueError(f'incompatible dimensions for axis {other_axis}')  607 indices[sum_indices:sum_indices+b.indices.size] = b.indices  608 sum_indices += b.indices.size ValueError: incompatible dimensions for axis 1 Error: incompatible dimensions for axis 1
0.10503
425,340,928
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
7abd973e01c0e247a2d0712e5e810b74
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) # X3 = hstack((X, X2)) X.shape
Out[1]: (1927, 9) (1927, 9)
0.071874
425,340,928
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
60a85d81e81fcd7036cb6b36728c0058
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) # X3 = hstack((X, X2)) X.shape, X2.shape
Out[1]: ((1927, 9), (5833, 13737)) ((1927, 9), (5833, 13737))
0.071002
425,340,928
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n (3, 0)\t5.0\n (3, 1)\t4.0\n (3, 3)\t4.0\n (3, 4)\t1.0\n (3, 6)\t1.0\n (4, 0)\t7.0\n (4, 1)\t5.0\n (4, 3)\t4.0\n (4, 4)\t2.0\n (5, 0)\t9.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (5, 4)\t1.0\n :\t:\n (1921, 3)\t3.0\n (1921, 4)\t1.0\n (1921, 7)\t3.0\n (1922, 0)\t28.0\n (1922, 1)\t12.0\n (1922, 3)\t1.0\n (1922, 7)\t1.0\n (1923, 0)\t30.0\n (1923, 1)\t16.0\n (1923, 3)\t5.0\n (1923, 7)\t1.0\n (1924, 0)\t32.0\n (1924, 1)\t8.0\n (1924, 3)\t3.0\n (1924, 7)\t1.0\n (1925, 0)\t35.0\n (1925, 1)\t19.0\n (1925, 3)\t10.0\n (1925, 4)\t4.0\n (1925, 7)\t1.0\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
7d92fd5ecb00318f2ee4ad6695ecdbb5
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) # X3 = hstack((X, X2)) X.shape, X2.shape
Out[1]: ((5833, 9), (5833, 13737)) ((5833, 9), (5833, 13737))
0.072369
425,340,928
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": null, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4f7d80d4f513aadd61ce15aaa8776504
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape
0.071947
425,472,000
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4544603db82db926b49bfeadfc9dbf02
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) pred = clf.predict(validation_features[train_columns]) f1_score(pred, validation_features["primary_label"], average='weighted')
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File <ipython-input-1-640a210a8d34>:18  15 clf = lgb.LGBMClassifier()  16 clf.fit(X3, target) ---> 18 pred = clf.predict(validation_features[train_columns])  19 f1_score(pred, validation_features["primary_label"], average='weighted') File /usr/local/lib/python3.9/site-packages/lightgbm/sklearn.py:1321, in LGBMClassifier.predict(self, X, raw_score, start_iteration, num_iteration, pred_leaf, pred_contrib, validate_features, **kwargs)  1309 def predict(  1310 self,  1311 X: _LGBM_ScikitMatrixLike,  (...)  1318 **kwargs: Any,  1319 ):  1320  """Docstring is inherited from the LGBMModel.""" -> 1321 result = self.predict_proba(  1322  X=X,  1323  raw_score=raw_score,  1324  start_iteration=start_iteration,  1325  num_iteration=num_iteration,  1326  pred_leaf=pred_leaf,  1327  pred_contrib=pred_contrib,  1328  validate_features=validate_features,  1329  **kwargs,  1330  )  1331 if callable(self._objective) or raw_score or pred_leaf or pred_contrib:  1332 return result File /usr/local/lib/python3.9/site-packages/lightgbm/sklearn.py:1351, in LGBMClassifier.predict_proba(self, X, raw_score, start_iteration, num_iteration, pred_leaf, pred_contrib, validate_features, **kwargs)  1339 def predict_proba(  1340 self,  1341 X: _LGBM_ScikitMatrixLike,  (...)  1348 **kwargs: Any,  1349 ):  1350  """Docstring is set after definition, using a template.""" -> 1351 result = super().predict(  1352  X=X,  1353  raw_score=raw_score,  1354  start_iteration=start_iteration,  1355  num_iteration=num_iteration,  1356  pred_leaf=pred_leaf,  1357  pred_contrib=pred_contrib,  1358  validate_features=validate_features,  1359  **kwargs,  1360  )  1361 if callable(self._objective) and not (raw_score or pred_leaf or pred_contrib):  1362 _log_warning(  1363 "Cannot compute class probabilities or labels "  1364 "due to the usage of customized objective function.\n"  1365 "Returning raw scores instead."  1366 ) File /usr/local/lib/python3.9/site-packages/lightgbm/sklearn.py:1010, in LGBMModel.predict(self, X, raw_score, start_iteration, num_iteration, pred_leaf, pred_contrib, validate_features, **kwargs)  1008 n_features = X.shape[1]  1009 if self._n_features != n_features: -> 1010 raise ValueError(  1011 "Number of features of the model must "  1012 f"match the input. Model n_features_ is {self._n_features} and "  1013 f"input n_features is {n_features}"  1014 )  1015 # retrieve original params that possibly can be used in both training and prediction  1016 # and then overwrite them (considering aliases) with params that were passed directly in prediction  1017 predict_params = self._process_params(stage="predict") ValueError: Number of features of the model must match the input. Model n_features_ is 13746 and input n_features is 9 Error: Number of features of the model must match the input. Model n_features_ is 13746 and input n_features is 9
2.082004
437,719,040
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": null, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
af6adeb5c5df073b4e1d3af557010e74
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) def transform(X, text_column): X = scipy.sparse.csr_matrix(X.values) X2 = vectorizer.transform(text_column) return hstack((X, X2)) pred = clf.predict(transform(validation_features[train_columns], validation_features['text'])) f1_score(pred, validation_features["primary_label"], average='weighted')
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) File <ipython-input-1-e17fffc58b7a>:23  20 X2 = vectorizer.transform(text_column)  21 return hstack((X, X2)) ---> 23 pred = clf.predict(transform(validation_features[train_columns], validation_features['text']))  25 f1_score(pred, validation_features["primary_label"], average='weighted') File <ipython-input-1-e17fffc58b7a>:20, in transform(X, text_column)  18 def transform(X, text_column):  19 X = scipy.sparse.csr_matrix(X.values) ---> 20 X2 = vectorizer.transform(text_column)  21 return hstack((X, X2)) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:2128, in TfidfVectorizer.transform(self, raw_documents)  2111 """Transform documents to document-term matrix.  2112  2113 Uses the vocabulary and document frequencies (df) learned by fit (or  (...)  2124  Tf-idf-weighted document-term matrix.  2125 """  2126 check_is_fitted(self, msg="The TF-IDF vectorizer is not fitted") -> 2128 X = super().transform(raw_documents)  2129 return self._tfidf.transform(X, copy=False) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1421, in CountVectorizer.transform(self, raw_documents)  1418 self._check_vocabulary()  1420 # use the same matrix-building strategy as fit_transform -> 1421 _, X = self._count_vocab(raw_documents, fixed_vocab=True)  1422 if self.binary:  1423 X.data.fill(1) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1263, in CountVectorizer._count_vocab(self, raw_documents, fixed_vocab)  1261 for doc in raw_documents:  1262 feature_counter = {} -> 1263 for feature in analyze(doc):  1264 try:  1265 feature_idx = vocabulary[feature] File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:104, in _analyze(doc, analyzer, tokenizer, ngrams, preprocessor, decoder, stop_words)  102 else:  103 if preprocessor is not None: --> 104 doc = preprocessor(doc)  105 if tokenizer is not None:  106 doc = tokenizer(doc) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:62, in _preprocess(doc, accent_function, lower)  43 """Chain together an optional series of text preprocessing steps to  44 apply to a document.  45  (...)  59  preprocessed string  60 """  61 if lower: ---> 62 doc = doc.lower()  63 if accent_function is not None:  64 doc = accent_function(doc) AttributeError: 'list' object has no attribute 'lower' Error: 'list' object has no attribute 'lower'
2.729737
455,069,696
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
7c0a51d41d1a4cee59dbc1f37ee6692e
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = text.apply(lambda x: " ".join(x)) validation_features["text"] = text.apply(lambda x: " ".join(x)) test_features["text"] = text.apply(lambda x: " ".join(x))
0.010047
455,069,696
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
22cdde42196961471a1b4d1098bb47e2
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: str <class 'str'>
0.005326
455,069,696
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
240a0ed65d14df06aeef85d274f6c5af
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: str <class 'str'>
0.005958
455,069,696
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f9911e329638130666a608e68c86fd1b
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
clf = lgb.LGBMClassifier()
0.006336
455,069,696
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
b17540f11e34d795ed9e7e9450dce263
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_columns = ['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error'] clf.fit(train_features[train_columns], target)
Out[1]: LGBMClassifier() LGBMClassifier()
1.037714
461,889,536
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
446e17f92dc0cda73e92667fb2f1f6d1
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
accuracy_score(clf.predict(train_features[train_columns]), target)
Out[1]: 0.8400480027430138 0.8400480027430138
0.043374
462,020,608
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
b29933aef2332e0f76e08b712645bfe1
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
target.value_counts(normalize=True)
Out[1]: primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64 primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64
0.007454
462,020,608
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
dfc48292a7667152e07c19d6669bd50c
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
pred = clf.predict(validation_features[train_columns]) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.5479133178319338 0.5479133178319338
0.019947
462,020,608
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72351430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
21f964a1a459822bcea89f6670e65569
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) def transform(X, text_column): X = scipy.sparse.csr_matrix(X.values) X2 = vectorizer.transform(text_column) return hstack((X, X2)) pred = clf.predict(transform(validation_features[train_columns], validation_features['text'])) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.3478215079449254 0.3478215079449254
2.391107
462,536,704
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff7167e0d0>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
9ae127959638c3de5d87e9d9c9ea4d83
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) def transform(X, text_column): X = scipy.sparse.csr_matrix(X.values) X2 = vectorizer.transform(text_column) return hstack((X, X2)) pred = clf.predict(transform(validation_features[train_columns], validation_features['text'])) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.3478215079449254 0.3478215079449254
2.054555
463,015,936
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f35bfb338774921cd25b1e1a0b7cf38c
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"].apply(lambda x: " ".join(x), inplace=True) validation_features["text"].apply(lambda x: " ".join(x), inplace=True) test_features["text"].apply(lambda x: " ".join(x), inplace=True)
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) File <ipython-input-1-7002e816f41b>:8  2 from sklearn.feature_extraction.text import TfidfVectorizer  4 # text = train_features["text"]  5 # vectorizer = TfidfVectorizer()  6 # X = vectorizer.fit_transform(corpus) ----> 8 train_features["text"].apply(lambda x: " ".join(x), inplace=True)  9 validation_features["text"].apply(lambda x: " ".join(x), inplace=True)  10 test_features["text"].apply(lambda x: " ".join(x), inplace=True) File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)  4789 def apply(  4790 self,  4791 func: AggFuncType,  (...)  4796 **kwargs,  4797 ) -> DataFrame | Series:  4798  """  4799  Invoke function on values of Series.  4800  (...)  4915  dtype: float64  4916  """ -> 4917 return SeriesApply(  4918  self,  4919  func,  4920  convert_dtype=convert_dtype,  4921  by_row=by_row,  4922  args=args,  4923  kwargs=kwargs,  4924  ).apply() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427, in SeriesApply.apply(self)  1424 return self.apply_compat()  1426 # self.func is Callable -> 1427 return self.apply_standard() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507, in SeriesApply.apply_standard(self)  1501 # row-wise access  1502 # apply doesn't have a `na_action` keyword and for backward compat reasons  1503 # we need to give `na_action="ignore"` for categorical data.  1504 # TODO: remove the `na_action="ignore"` when that default has been changed in  1505 # Categorical (GH51645).  1506 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None -> 1507 mapped = obj._map_values(  1508  mapper=curried, na_action=action, convert=self.convert_dtype  1509 )  1511 if len(mapped) and isinstance(mapped[0], ABCSeries):  1512 # GH#43986 Need to do list(mapped) in order to get treated as nested  1513 # See also GH#25959 regarding EA support  1514 return obj._constructor_expanddim(list(mapped), index=obj.index) File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921, in IndexOpsMixin._map_values(self, mapper, na_action, convert)  918 if isinstance(arr, ExtensionArray):  919 return arr.map(mapper, na_action=na_action) --> 921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert) File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743, in map_array(arr, mapper, na_action, convert)  1741 values = arr.astype(object, copy=False)  1742 if na_action is None: -> 1743 return lib.map_infer(values, mapper, convert=convert)  1744 else:  1745 return lib.map_infer_mask(  1746 values, mapper, mask=isna(values).view(np.uint8), convert=convert  1747 ) File lib.pyx:2972, in pandas._libs.lib.map_infer() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1496, in SeriesApply.apply_standard.<locals>.curried(x)  1495 def curried(x): -> 1496 return func(x, *self.args, **self.kwargs) TypeError: <lambda>() got an unexpected keyword argument 'inplace' Error: <lambda>() got an unexpected keyword argument 'inplace'
0.033033
463,015,936
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1799635, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2090749, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
65d1cde714f2db8c7b36643e6f3822dc
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x))
0.023491
465,375,232
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
1cf14e28011cdb3b26471ec0466e411c
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: str <class 'str'>
0.004999
465,375,232
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
87427fdc1cb75cc79fbe23096b7b4ec0
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
clf = lgb.LGBMClassifier()
0.007294
465,375,232
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
603e99769d388755476d1fd908f70e7b
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_columns = ['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error'] clf.fit(train_features[train_columns], target)
Out[1]: LGBMClassifier() LGBMClassifier()
0.875836
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
cb76fc8b46a9d86254b3a48cdceef2bc
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
accuracy_score(clf.predict(train_features[train_columns]), target)
Out[1]: 0.8400480027430138 0.8400480027430138
0.041924
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
0a0324462b11fcc99dcf3de85aa58a0d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
target.value_counts(normalize=True)
Out[1]: primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64 primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64
0.006135
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'prediction'\n 'prediction' 'data_preprocessing']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
6e9bca0d23b3094050e23bc1b63761ee
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
pred = clf.predict(validation_features[train_columns]) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.5479133178319338 0.5479133178319338
0.024369
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
fbdc5f3f0372a9f09b92383635700a2e
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) def transform(X, text_column): X = scipy.sparse.csr_matrix(X.values) X2 = vectorizer.transform(text_column) return hstack((X, X2)) pred = clf.predict(transform(validation_features[train_columns], validation_features['text'])) f1_score(pred, validation_features["primary_label"], average='weighted')
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) File <ipython-input-1-e17fffc58b7a>:10  6 vectorizer = TfidfVectorizer()  8 X = scipy.sparse.csr_matrix(train_features[train_columns].values) ---> 10 X2 = vectorizer.fit_transform(train_features["text"])  12 X3 = hstack((X, X2))  13 # X.shape, X2.shape File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:2104, in TfidfVectorizer.fit_transform(self, raw_documents, y)  2097 self._check_params()  2098 self._tfidf = TfidfTransformer(  2099 norm=self.norm,  2100 use_idf=self.use_idf,  2101 smooth_idf=self.smooth_idf,  2102 sublinear_tf=self.sublinear_tf,  2103 ) -> 2104 X = super().fit_transform(raw_documents)  2105 self._tfidf.fit(X)  2106 # X is already a transformed view of raw_documents so  2107 # we set copy to False File /usr/local/lib/python3.9/site-packages/sklearn/base.py:1389, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)  1382 estimator._validate_params()  1384 with config_context(  1385 skip_parameter_validation=(  1386 prefer_skip_nested_validation or global_skip_validation  1387 )  1388 ): -> 1389 return fit_method(estimator, *args, **kwargs) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1376, in CountVectorizer.fit_transform(self, raw_documents, y)  1368 warnings.warn(  1369 "Upper case characters found in"  1370 " vocabulary while 'lowercase'"  1371 " is True. These entries will not"  1372 " be matched with any documents"  1373 )  1374 break -> 1376 vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_)  1378 if self.binary:  1379 X.data.fill(1) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1282, in CountVectorizer._count_vocab(self, raw_documents, fixed_vocab)  1280 vocabulary = dict(vocabulary)  1281 if not vocabulary: -> 1282 raise ValueError(  1283 "empty vocabulary; perhaps the documents only contain stop words"  1284 )  1286 if indptr[-1] > np.iinfo(np.int32).max: # = 2**31 - 1  1287 if _IS_32BIT: ValueError: empty vocabulary; perhaps the documents only contain stop words Error: empty vocabulary; perhaps the documents only contain stop words
0.114043
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
67c99b2aa0d3b64c85ffc505001ae702
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# train_features.drop(columns=["filename"]) validation_features["text"]
Out[1]: 0 i m p o r t p a n d a s a s p d i m p ... 1 l _ c o l s = [ ' u s e r _ i d ' , ' m o ... 2 l . h e a d ( ) 3 r . h e a d ( ) 4 m o v i e s = p d . m e r g e ( l , r ) ... 1922 p r i n t ( " B u i l d i n g m o d e l . . ... 1923 p _ x , p _ y = z i p ( * t e s t _ d a ... 1924 % t i m e p r e d s = m o d e l . p r e ... 1925 p r e d _ i d x = [ n p . a r g m a x ( a ... 1926 p a i r s = z i p ( p r e d _ i d x , p ... Name: text, Length: 1927, dtype: object 0 i m p o r t p a n d a s a s p d i m p ... 1 l _ c o l s = [ ' u s e r _ i d ' , ' m o ... 2 l . h e a d ( ) 3 r . h e a d ( ) 4 m o v i e s = p d . m e r g e ( l , r ) ... 1922 p r i n t ( " B u i l d i n g m o d e l . . ... 1923 p _ x , p _ y = z i p ( * t e s t _ d a ... 1924 % t i m e p r e d s = m o d e l . p r e ... 1925 p r e d _ i d x = [ n p . a r g m a x ( a ... 1926 p a i r s = z i p ( p r e d _ i d x , p ... Name: text, Length: 1927, dtype: object
0.004278
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
b278ffba445c62fbd90c43e5345c48f0
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(eval(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(eval(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x))
 File <ipython-input-1-93cfcee47e22>:9  validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(eval(x))  ^ SyntaxError: invalid syntax Error: None
0.004148
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
580ea89e6cab7a91ab1eef4ce066f7ac
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(eval(x))) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(eval(x))) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x))
Traceback (most recent call last):  File /usr/local/lib/python3.9/site-packages/IPython/core/interactiveshell.py:3550 in run_code exec(code_obj, self.user_global_ns, self.user_ns)  File <ipython-input-1-d7a7b0c056ca>:8 train_features["text"] = train_features["text"].apply(lambda x: " ".join(eval(x)))  File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917 in apply return SeriesApply(  File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427 in apply return self.apply_standard()  File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507 in apply_standard mapped = obj._map_values(  File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921 in _map_values return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert)  File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743 in map_array return lib.map_infer(values, mapper, convert=convert)  File lib.pyx:2972 in pandas._libs.lib.map_infer  File <ipython-input-1-d7a7b0c056ca>:8 in <lambda>  train_features["text"] = train_features["text"].apply(lambda x: " ".join(eval(x)))  File <string>:1  i m p o r t p a n d a s a s p d i m p o r t n u m p y a s n p  ^ SyntaxError: invalid syntax Error: invalid syntax (<string>, line 1)
0.004346
471,470,080
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2226140, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2519192, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f2c6bfe09c037acab6c4c6e1820b2ebc
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" # train_features[train_features["code_line_after"] == 0].loc["code_line_after"] = "" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.031584
488,837,120
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
51891f1f805106e79e74d5bb111015dd
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x))
0.006831
490,934,272
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
77cd1d61c881e651498a71b284661406
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: str <class 'str'>
0.005672
491,196,416
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
a2412ff3ccdb4b64f8a9b0c206cc3384
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
type((train_features["text"]).sample(100).iloc[0])
Out[1]: str <class 'str'>
0.005194
491,327,488
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
dbfd520b8e22e9434da8bbafdd6f55f3
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
validation_features["text"]
Out[1]: 0 import matplotlib.pyplot as plt import numpy a... 1 length = 80 # x range depth = 200 # z range 2 model = 1 + np.tri(depth, length, -depth//3) p... 3 model[:depth//3,:] = 0 plt.imshow(model) plt.c... 4 rocks = np.array([[2700, 2750], [2400, 2450], ... ... 1922 print(num_mistakes_dict['177'][1]) 1923 print(num_mistakes_dict['279'][1]) print("----... 1924 print(num_mistakes_dict['2854'][1]) print("---... 1925 error_type_dict = {} for key in error_dict: fo... 1926 misspelled_words = {} for key in error_dict: f... Name: text, Length: 1927, dtype: object 0 import matplotlib.pyplot as plt import numpy a... 1 length = 80 # x range depth = 200 # z range 2 model = 1 + np.tri(depth, length, -depth//3) p... 3 model[:depth//3,:] = 0 plt.imshow(model) plt.c... 4 rocks = np.array([[2700, 2750], [2400, 2450], ... ... 1922 print(num_mistakes_dict['177'][1]) 1923 print(num_mistakes_dict['279'][1]) print("----... 1924 print(num_mistakes_dict['2854'][1]) print("---... 1925 error_type_dict = {} for key in error_dict: fo... 1926 misspelled_words = {} for key in error_dict: f... Name: text, Length: 1927, dtype: object
0.00618
491,458,560
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f82f195e975b0d541892ff51aeb32769
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
pred = clf.predict(validation_features[train_columns]) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.5479133178319338 0.5479133178319338
0.022512
491,982,848
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'load_data' 'data_exploration' ... 'data_exploration'\n 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719cbb80>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4dbe3c5f65d35b4c26b4652c5a2bb72f
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# sklearn.linear_model.LogisticRegression from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack, vstack vectorizer = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X2 = vectorizer.fit_transform(train_features["text"]) X3 = hstack((X, X2)) # X.shape, X2.shape clf = lgb.LGBMClassifier() clf.fit(X3, target) def transform(X, text_column): X = scipy.sparse.csr_matrix(X.values) X2 = vectorizer.transform(text_column) return hstack((X, X2)) pred = clf.predict(transform(validation_features[train_columns], validation_features['text'])) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.7263211151032674 0.7263211151032674
2.414693
487,419,904
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": null, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff719ad040>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": null, "vectorizer2": null, "vectorizer3": null, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
e46a9cc8083770fc9394dc38af352c33
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
def transform(X, text_column, vectorizer): X2 = vectorizer.transform(text_column) return hstack((X, X2)) vectorizer1 = TfidfVectorizer() vectorizer2 = TfidfVectorizer() vectorizer3 = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X1 = vectorizer.fit_transform(train_features['text']) X2 = vectorizer1.fit_transform(train_features['code_line_before']) X3 = vectorizer2.fit_transform(train_features['code_line_after']) X = hstack((X, X1, X2, X3)) clf = lgb.LGBMClassifier() clf.fit(X, target) X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X1 = vectorizer.transform(validation_features['text']) X2 = vectorizer1.transform(validation_features['code_line_before']) X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1, X2, X3)) pred = clf.predict(X) f1_score(pred, validation_features["primary_label"], average='weighted')
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) File <ipython-input-1-57df7f073019>:11  9 X = scipy.sparse.csr_matrix(train_features[train_columns].values)  10 X1 = vectorizer.fit_transform(train_features['text']) ---> 11 X2 = vectorizer1.fit_transform(train_features['code_line_before'])  12 X3 = vectorizer2.fit_transform(train_features['code_line_after'])  14 X = hstack((X, X1, X2, X3)) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:2104, in TfidfVectorizer.fit_transform(self, raw_documents, y)  2097 self._check_params()  2098 self._tfidf = TfidfTransformer(  2099 norm=self.norm,  2100 use_idf=self.use_idf,  2101 smooth_idf=self.smooth_idf,  2102 sublinear_tf=self.sublinear_tf,  2103 ) -> 2104 X = super().fit_transform(raw_documents)  2105 self._tfidf.fit(X)  2106 # X is already a transformed view of raw_documents so  2107 # we set copy to False File /usr/local/lib/python3.9/site-packages/sklearn/base.py:1389, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)  1382 estimator._validate_params()  1384 with config_context(  1385 skip_parameter_validation=(  1386 prefer_skip_nested_validation or global_skip_validation  1387 )  1388 ): -> 1389 return fit_method(estimator, *args, **kwargs) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1376, in CountVectorizer.fit_transform(self, raw_documents, y)  1368 warnings.warn(  1369 "Upper case characters found in"  1370 " vocabulary while 'lowercase'"  1371 " is True. These entries will not"  1372 " be matched with any documents"  1373 )  1374 break -> 1376 vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_)  1378 if self.binary:  1379 X.data.fill(1) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1263, in CountVectorizer._count_vocab(self, raw_documents, fixed_vocab)  1261 for doc in raw_documents:  1262 feature_counter = {} -> 1263 for feature in analyze(doc):  1264 try:  1265 feature_idx = vocabulary[feature] File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:104, in _analyze(doc, analyzer, tokenizer, ngrams, preprocessor, decoder, stop_words)  102 else:  103 if preprocessor is not None: --> 104 doc = preprocessor(doc)  105 if tokenizer is not None:  106 doc = tokenizer(doc) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:62, in _preprocess(doc, accent_function, lower)  43 """Chain together an optional series of text preprocessing steps to  44 apply to a document.  45  (...)  59  preprocessed string  60 """  61 if lower: ---> 62 doc = doc.lower()  63 if accent_function is not None:  64 doc = accent_function(doc) AttributeError: 'int' object has no attribute 'lower' Error: 'int' object has no attribute 'lower'
0.109583
487,419,904
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
661a0d236d33119ab3bb625175848979
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x)) validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x)) test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) train_features["code_line_after"] = train_features["code_line_after"].apply(lambda x: " ".join(x)) validation_features["code_line_after"] = validation_features["code_line_after"].apply(lambda x: " ".join(x)) test_features["code_line_after"] = test_features["code_line_after"].apply(lambda x: " ".join(x))
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) File <ipython-input-1-fac9f849a0a1>:12  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)  4789 def apply(  4790 self,  4791 func: AggFuncType,  (...)  4796 **kwargs,  4797 ) -> DataFrame | Series:  4798  """  4799  Invoke function on values of Series.  4800  (...)  4915  dtype: float64  4916  """ -> 4917 return SeriesApply(  4918  self,  4919  func,  4920  convert_dtype=convert_dtype,  4921  by_row=by_row,  4922  args=args,  4923  kwargs=kwargs,  4924  ).apply() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427, in SeriesApply.apply(self)  1424 return self.apply_compat()  1426 # self.func is Callable -> 1427 return self.apply_standard() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507, in SeriesApply.apply_standard(self)  1501 # row-wise access  1502 # apply doesn't have a `na_action` keyword and for backward compat reasons  1503 # we need to give `na_action="ignore"` for categorical data.  1504 # TODO: remove the `na_action="ignore"` when that default has been changed in  1505 # Categorical (GH51645).  1506 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None -> 1507 mapped = obj._map_values(  1508  mapper=curried, na_action=action, convert=self.convert_dtype  1509 )  1511 if len(mapped) and isinstance(mapped[0], ABCSeries):  1512 # GH#43986 Need to do list(mapped) in order to get treated as nested  1513 # See also GH#25959 regarding EA support  1514 return obj._constructor_expanddim(list(mapped), index=obj.index) File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921, in IndexOpsMixin._map_values(self, mapper, na_action, convert)  918 if isinstance(arr, ExtensionArray):  919 return arr.map(mapper, na_action=na_action) --> 921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert) File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743, in map_array(arr, mapper, na_action, convert)  1741 values = arr.astype(object, copy=False)  1742 if na_action is None: -> 1743 return lib.map_infer(values, mapper, convert=convert)  1744 else:  1745 return lib.map_infer_mask(  1746 values, mapper, mask=isna(values).view(np.uint8), convert=convert  1747 ) File lib.pyx:2972, in pandas._libs.lib.map_infer() File <ipython-input-1-fac9f849a0a1>:12, in <lambda>(x)  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) TypeError: can only join an iterable Error: can only join an iterable
0.05887
487,161,856
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 2498067, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 7552563, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2686627, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
7b385410b5569ba781a45bc64639d761
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-8fc4d65faab3>:21: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-8fc4d65faab3>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE"
0.03332
495,091,712
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
393a7ac8390d9930bf98222da4a138fa
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x)) validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x)) test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) train_features["code_line_after"] = train_features["code_line_after"].apply(lambda x: " ".join(x)) validation_features["code_line_after"] = validation_features["code_line_after"].apply(lambda x: " ".join(x)) test_features["code_line_after"] = test_features["code_line_after"].apply(lambda x: " ".join(x))
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) File <ipython-input-1-fac9f849a0a1>:12  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)  4789 def apply(  4790 self,  4791 func: AggFuncType,  (...)  4796 **kwargs,  4797 ) -> DataFrame | Series:  4798  """  4799  Invoke function on values of Series.  4800  (...)  4915  dtype: float64  4916  """ -> 4917 return SeriesApply(  4918  self,  4919  func,  4920  convert_dtype=convert_dtype,  4921  by_row=by_row,  4922  args=args,  4923  kwargs=kwargs,  4924  ).apply() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427, in SeriesApply.apply(self)  1424 return self.apply_compat()  1426 # self.func is Callable -> 1427 return self.apply_standard() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507, in SeriesApply.apply_standard(self)  1501 # row-wise access  1502 # apply doesn't have a `na_action` keyword and for backward compat reasons  1503 # we need to give `na_action="ignore"` for categorical data.  1504 # TODO: remove the `na_action="ignore"` when that default has been changed in  1505 # Categorical (GH51645).  1506 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None -> 1507 mapped = obj._map_values(  1508  mapper=curried, na_action=action, convert=self.convert_dtype  1509 )  1511 if len(mapped) and isinstance(mapped[0], ABCSeries):  1512 # GH#43986 Need to do list(mapped) in order to get treated as nested  1513 # See also GH#25959 regarding EA support  1514 return obj._constructor_expanddim(list(mapped), index=obj.index) File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921, in IndexOpsMixin._map_values(self, mapper, na_action, convert)  918 if isinstance(arr, ExtensionArray):  919 return arr.map(mapper, na_action=na_action) --> 921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert) File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743, in map_array(arr, mapper, na_action, convert)  1741 values = arr.astype(object, copy=False)  1742 if na_action is None: -> 1743 return lib.map_infer(values, mapper, convert=convert)  1744 else:  1745 return lib.map_infer_mask(  1746 values, mapper, mask=isna(values).view(np.uint8), convert=convert  1747 ) File lib.pyx:2972, in pandas._libs.lib.map_infer() File <ipython-input-1-fac9f849a0a1>:12, in <lambda>(x)  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) TypeError: can only join an iterable Error: can only join an iterable
0.03941
496,009,216
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
3446d0f06581685d65971dd885463b90
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# train_features.drop(columns=["filename"]) validation_features["code_line_before"].text
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) <ipython-input-1-b4d4b25d8ce0> in ?() ----> 3 # train_features.drop(columns=["filename"])  4   5 validation_features["code_line_before"].text /usr/local/lib/python3.9/site-packages/pandas/core/generic.py in ?(self, name)  6295 and name not in self._accessors  6296 and self._info_axis._can_hold_identifiers_and_holds_name(name)  6297 ):  6298 return self[name] -> 6299 return object.__getattribute__(self, name)  AttributeError: 'Series' object has no attribute 'text' Error: 'Series' object has no attribute 'text'
0.009599
496,009,216
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
014acf2c8c80d77a5c046cb15d6b67f5
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# train_features.drop(columns=["filename"]) validation_features["code_line_before"].sample(100)
Out[1]: 586 [bt_classifier_model = gl.classifier.boosted_t... 1718 [finaldf['end_month'] = pd.DatetimeIndex(final... 1057 [plt.legend()] 1187 [from sklearn.datasets import make_blobs] 1786 ['max_features':['sqrt','log2']}] ... 3 [plt.show()] 372 [show(p1)] 690 [return act] 1625 [content['TrimContent'][:count] = trimtext] 1051 [index=True,index_label='Row')] Name: code_line_before, Length: 100, dtype: object 586 [bt_classifier_model = gl.classifier.boosted_t... 1718 [finaldf['end_month'] = pd.DatetimeIndex(final... 1057 [plt.legend()] 1187 [from sklearn.datasets import make_blobs] 1786 ['max_features':['sqrt','log2']}] ... 3 [plt.show()] 372 [show(p1)] 690 [return act] 1625 [content['TrimContent'][:count] = trimtext] 1051 [index=True,index_label='Row')] Name: code_line_before, Length: 100, dtype: object
0.006634
496,009,216
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 6280981, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4a7508efc043130f0f192cd7e695464d
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" validation_features[validation_features['text'] == 0]['text'] = "NONE" validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-75121468ccae>:21: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-75121468ccae>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" <ipython-input-1-75121468ccae>:25: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-75121468ccae>:26: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE"
0.035617
513,814,528
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
0040aa8f8fd5330fb91a051354125151
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" validation_features[validation_features['text'] == 0]['text'] = "NONE" validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features[test_features['text'] == 0]['text'] = "NONE" test_features[test_features['code_line_after'] == 0]['code_line_after'] = "NONE" test_features[test_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-fdc8a4e804f5>:21: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-fdc8a4e804f5>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" <ipython-input-1-fdc8a4e804f5>:25: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-fdc8a4e804f5>:26: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE" <ipython-input-1-fdc8a4e804f5>:29: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_features[test_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-fdc8a4e804f5>:30: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_features[test_features['code_line_before'] == 0]['code_line_before'] = "NONE"
0.036525
532,303,872
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
732571d1f3bdffde84b6c981d7cd35d6
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) validation_features[validation_features['text'] == 0]['text'] = "NONE" validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features[test_features['text'] == 0]['text'] = "NONE" test_features[test_features['code_line_after'] == 0]['code_line_after'] = "NONE" test_features[test_features['code_line_before'] == 0]['code_line_before'] = "NONE" print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-142e9484ccbe>:21: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-142e9484ccbe>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" <ipython-input-1-142e9484ccbe>:28: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-142e9484ccbe>:29: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy validation_features[validation_features['code_line_before'] == 0]['code_line_before'] = "NONE" <ipython-input-1-142e9484ccbe>:32: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_features[test_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-142e9484ccbe>:33: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy test_features[test_features['code_line_before'] == 0]['code_line_before'] = "NONE"
0.142749
526,938,112
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
ee7cc0ed023c02f065374fbd66f075b0
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) train_features[train_features['text'] == 0]['text'] = "NONE" train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21) <ipython-input-1-8fc4d65faab3>:21: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" <ipython-input-1-8fc4d65faab3>:22: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE"
0.035513
526,938,112
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
fb4deaaf42e7df3aaffbf7afe81309f9
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
import pandas as pd import lightgbm as lgb from sklearn.metrics import accuracy_score from sklearn.feature_extraction.text import TfidfVectorizer import scipy from scipy.sparse import hstack from sklearn.model_selection import train_test_split features_path = 'data/task2/' test_features = pd.read_pickle(features_path+'test_features.pkl') train_features = pd.read_pickle(features_path+'train_features.pkl') validation_features = pd.read_pickle(features_path+'validation_features.pkl') train_features.index = range(train_features.shape[0]) validation_features.index = range(validation_features.shape[0]) test_features.index = range(test_features.shape[0]) train_features.fillna(0, inplace=True) # train_features[train_features['text'] == 0]['text'] = "NONE" # train_features[train_features['code_line_after'] == 0]['code_line_after'] = "NONE" # train_features[train_features['code_line_before'] == 0]['code_line_before'] = "NONE" test_features.fillna(0, inplace=True) validation_features.fillna(0, inplace=True) print(train_features.shape) print(validation_features.shape) print(test_features.shape)
(5833, 32) (1927, 32) (1918, 21)
0.03455
526,938,112
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
a6c1b2545ad530b2f147350372ff87bf
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.columns validation_features.columns
Out[1]: Index(['filename', 'cell_type', 'cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'text/plain', 'image/png', 'text/html', 'execute_result', 'display_data', 'stream', 'error', 'text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading', 'packages_info', 'primary_label', 'helper_functions', 'load_data', 'data_exploration', 'data_preprocessing', 'evaluation', 'modelling', 'prediction', 'result_visualization', 'save_results', 'comment_only'], dtype='object') Index(['filename', 'cell_type', 'cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'text/plain', 'image/png', 'text/html', 'execute_result', 'display_data', 'stream', 'error', 'text', 'comment', 'code_line_before', 'code_line_after', 'markdown_heading', 'packages_info', 'primary_label', 'helper_functions', 'load_data', 'data_exploration', 'data_preprocessing', 'evaluation', 'modelling', 'prediction', 'result_visualization', 'save_results', 'comment_only'], dtype='object')
0.004536
526,938,112
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5457229, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_54880.ipynb code ... 0 0\n1 nb_54880.ipynb code ... 0 0\n2 nb_54880.ipynb code ... 0 0\n3 nb_54880.ipynb code ... 0 0\n4 nb_54880.ipynb code ... 0 0\n... ... ... ... ... ...\n5828 nb_95821.ipynb code ... 0 0\n5829 nb_95821.ipynb code ... 0 0\n5830 nb_95821.ipynb code ... 0 0\n5831 nb_95821.ipynb code ... 0 0\n5832 nb_95821.ipynb code ... 0 0\n\n[5833 rows x 32 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
f4dc21fdbc7a463eb95def2f5e114210
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
target_drop = ["primary_label", "load_data", "helper_functions", "data_preprocessing", "data_exploration", "modelling", "prediction", "evaluation", "result_visualization", "save_results", "comment_only"] target = train_features["primary_label"] train_features.drop(columns=target, inplace=True)
0.008476
521,973,760
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 4990589, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
2657f0e372cec7cd2fd742022a895e22
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
# train_features.drop(columns=["filename"]) validation_features["code_line_before"].sample(100)
Out[1]: 414 [df.to_csv('clean_data.csv')] 382 [opt = tf.train.AdamOptimizer(learning_rate).m... 509 [print(scores4)] 1388 [cross_val_score(clf, texts, labels, cv=Strati... 359 [exec(open("mnist_cnnFORTESTING.py").read())] ... 408 [df.loc[df.exits > 8000,'exits'] = np.nan] 1431 [sn.distplot(year_price['SalePrice'])] 564 [sc.stop()] 117 [plt.title('Training: %i' % label)] 626 [vectorizer] Name: code_line_before, Length: 100, dtype: object 414 [df.to_csv('clean_data.csv')] 382 [opt = tf.train.AdamOptimizer(learning_rate).m... 509 [print(scores4)] 1388 [cross_val_score(clf, texts, labels, cv=Strati... 359 [exec(open("mnist_cnnFORTESTING.py").read())] ... 408 [df.loc[df.exits > 8000,'exits'] = np.nan] 1431 [sn.distplot(year_price['SalePrice'])] 564 [sc.stop()] 117 [plt.title('Training: %i' % label)] 626 [vectorizer] Name: code_line_before, Length: 100, dtype: object
0.006546
521,973,760
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1546797, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 4990589, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 1826459, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
7c2b85a9e93413979b50212d31d39da4
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_features.text[1] from sklearn.feature_extraction.text import TfidfVectorizer # text = train_features["text"] # vectorizer = TfidfVectorizer() # X = vectorizer.fit_transform(corpus) train_features["text"] = train_features["text"].apply(lambda x: " ".join(x)) validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x)) test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x)) validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x)) test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) train_features["code_line_after"] = train_features["code_line_after"].apply(lambda x: " ".join(x)) validation_features["code_line_after"] = validation_features["code_line_after"].apply(lambda x: " ".join(x)) test_features["code_line_after"] = test_features["code_line_after"].apply(lambda x: " ".join(x))
--------------------------------------------------------------------------- TypeError Traceback (most recent call last) File <ipython-input-1-fac9f849a0a1>:12  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) File /usr/local/lib/python3.9/site-packages/pandas/core/series.py:4917, in Series.apply(self, func, convert_dtype, args, by_row, **kwargs)  4789 def apply(  4790 self,  4791 func: AggFuncType,  (...)  4796 **kwargs,  4797 ) -> DataFrame | Series:  4798  """  4799  Invoke function on values of Series.  4800  (...)  4915  dtype: float64  4916  """ -> 4917 return SeriesApply(  4918  self,  4919  func,  4920  convert_dtype=convert_dtype,  4921  by_row=by_row,  4922  args=args,  4923  kwargs=kwargs,  4924  ).apply() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1427, in SeriesApply.apply(self)  1424 return self.apply_compat()  1426 # self.func is Callable -> 1427 return self.apply_standard() File /usr/local/lib/python3.9/site-packages/pandas/core/apply.py:1507, in SeriesApply.apply_standard(self)  1501 # row-wise access  1502 # apply doesn't have a `na_action` keyword and for backward compat reasons  1503 # we need to give `na_action="ignore"` for categorical data.  1504 # TODO: remove the `na_action="ignore"` when that default has been changed in  1505 # Categorical (GH51645).  1506 action = "ignore" if isinstance(obj.dtype, CategoricalDtype) else None -> 1507 mapped = obj._map_values(  1508  mapper=curried, na_action=action, convert=self.convert_dtype  1509 )  1511 if len(mapped) and isinstance(mapped[0], ABCSeries):  1512 # GH#43986 Need to do list(mapped) in order to get treated as nested  1513 # See also GH#25959 regarding EA support  1514 return obj._constructor_expanddim(list(mapped), index=obj.index) File /usr/local/lib/python3.9/site-packages/pandas/core/base.py:921, in IndexOpsMixin._map_values(self, mapper, na_action, convert)  918 if isinstance(arr, ExtensionArray):  919 return arr.map(mapper, na_action=na_action) --> 921 return algorithms.map_array(arr, mapper, na_action=na_action, convert=convert) File /usr/local/lib/python3.9/site-packages/pandas/core/algorithms.py:1743, in map_array(arr, mapper, na_action, convert)  1741 values = arr.astype(object, copy=False)  1742 if na_action is None: -> 1743 return lib.map_infer(values, mapper, convert=convert)  1744 else:  1745 return lib.map_infer_mask(  1746 values, mapper, mask=isna(values).view(np.uint8), convert=convert  1747 ) File lib.pyx:2972, in pandas._libs.lib.map_infer() File <ipython-input-1-fac9f849a0a1>:12, in <lambda>(x)  9 validation_features["text"] = validation_features["text"].apply(lambda x: " ".join(x))  10 test_features["text"] = test_features["text"].apply(lambda x: " ".join(x)) ---> 12 train_features["code_line_before"] = train_features["code_line_before"].apply(lambda x: " ".join(x))  13 validation_features["code_line_before"] = validation_features["code_line_before"].apply(lambda x: " ".join(x))  14 test_features["code_line_before"] = test_features["code_line_before"].apply(lambda x: " ".join(x)) TypeError: can only join an iterable Error: can only join an iterable
0.041905
521,973,760
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
1314fec21007cebc2d172f3cf6e085bd
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
validation_features["text"]
Out[1]: 0 import matplotlib.pyplot as plt import numpy a... 1 length = 80 # x range depth = 200 # z range 2 model = 1 + np.tri(depth, length, -depth//3) p... 3 model[:depth//3,:] = 0 plt.imshow(model) plt.c... 4 rocks = np.array([[2700, 2750], [2400, 2450], ... ... 1922 print(num_mistakes_dict['177'][1]) 1923 print(num_mistakes_dict['279'][1]) print("----... 1924 print(num_mistakes_dict['2854'][1]) print("---... 1925 error_type_dict = {} for key in error_dict: fo... 1926 misspelled_words = {} for key in error_dict: f... Name: text, Length: 1927, dtype: object 0 import matplotlib.pyplot as plt import numpy a... 1 length = 80 # x range depth = 200 # z range 2 model = 1 + np.tri(depth, length, -depth//3) p... 3 model[:depth//3,:] = 0 plt.imshow(model) plt.c... 4 rocks = np.array([[2700, 2750], [2400, 2450], ... ... 1922 print(num_mistakes_dict['177'][1]) 1923 print(num_mistakes_dict['279'][1]) print("----... 1924 print(num_mistakes_dict['2854'][1]) print("---... 1925 error_type_dict = {} for key in error_dict: fo... 1926 misspelled_words = {} for key in error_dict: f... Name: text, Length: 1927, dtype: object
0.005737
521,973,760
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
bbe24fc9688fbf8397cd0a192ec13b37
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
clf = lgb.LGBMClassifier()
0.006303
507,887,616
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
880b46336fbe89a448470b9974cc8796
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
train_columns = ['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error'] clf.fit(train_features[train_columns], target)
Out[1]: LGBMClassifier() LGBMClassifier()
1.166255
513,785,856
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4b6ad67ce3789f208c621ab553a19fcd
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
target.value_counts(normalize=True)
Out[1]: primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64 primary_label data_exploration 0.285273 data_preprocessing 0.239328 modelling 0.158066 helper_functions 0.080062 load_data 0.074404 result_visualization 0.050060 evaluation 0.039945 prediction 0.030859 comment_only 0.023144 save_results 0.018858 Name: proportion, dtype: float64
0.006645
513,785,856
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffffa5836f70>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
c6eec377fe5beeb708019d4ea41531a4
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
def transform(X, text_column, vectorizer): X2 = vectorizer.transform(text_column) return hstack((X, X2)) vectorizer1 = TfidfVectorizer() vectorizer2 = TfidfVectorizer() vectorizer3 = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X1 = vectorizer.fit_transform(train_features['text']) X2 = vectorizer1.fit_transform(train_features['code_line_before']) X3 = vectorizer2.fit_transform(train_features['code_line_after']) X = hstack((X, X1, X2, X3)) clf = lgb.LGBMClassifier() clf.fit(X, target) X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X1 = vectorizer.transform(validation_features['text']) X2 = vectorizer1.transform(validation_features['code_line_before']) X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1, X2, X3)) pred = clf.predict(X) f1_score(pred, validation_features["primary_label"], average='weighted')
--------------------------------------------------------------------------- AttributeError Traceback (most recent call last) File <ipython-input-1-57df7f073019>:11  9 X = scipy.sparse.csr_matrix(train_features[train_columns].values)  10 X1 = vectorizer.fit_transform(train_features['text']) ---> 11 X2 = vectorizer1.fit_transform(train_features['code_line_before'])  12 X3 = vectorizer2.fit_transform(train_features['code_line_after'])  14 X = hstack((X, X1, X2, X3)) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:2104, in TfidfVectorizer.fit_transform(self, raw_documents, y)  2097 self._check_params()  2098 self._tfidf = TfidfTransformer(  2099 norm=self.norm,  2100 use_idf=self.use_idf,  2101 smooth_idf=self.smooth_idf,  2102 sublinear_tf=self.sublinear_tf,  2103 ) -> 2104 X = super().fit_transform(raw_documents)  2105 self._tfidf.fit(X)  2106 # X is already a transformed view of raw_documents so  2107 # we set copy to False File /usr/local/lib/python3.9/site-packages/sklearn/base.py:1389, in _fit_context.<locals>.decorator.<locals>.wrapper(estimator, *args, **kwargs)  1382 estimator._validate_params()  1384 with config_context(  1385 skip_parameter_validation=(  1386 prefer_skip_nested_validation or global_skip_validation  1387 )  1388 ): -> 1389 return fit_method(estimator, *args, **kwargs) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1376, in CountVectorizer.fit_transform(self, raw_documents, y)  1368 warnings.warn(  1369 "Upper case characters found in"  1370 " vocabulary while 'lowercase'"  1371 " is True. These entries will not"  1372 " be matched with any documents"  1373 )  1374 break -> 1376 vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary_)  1378 if self.binary:  1379 X.data.fill(1) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:1263, in CountVectorizer._count_vocab(self, raw_documents, fixed_vocab)  1261 for doc in raw_documents:  1262 feature_counter = {} -> 1263 for feature in analyze(doc):  1264 try:  1265 feature_idx = vocabulary[feature] File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:104, in _analyze(doc, analyzer, tokenizer, ngrams, preprocessor, decoder, stop_words)  102 else:  103 if preprocessor is not None: --> 104 doc = preprocessor(doc)  105 if tokenizer is not None:  106 doc = tokenizer(doc) File /usr/local/lib/python3.9/site-packages/sklearn/feature_extraction/text.py:62, in _preprocess(doc, accent_function, lower)  43 """Chain together an optional series of text preprocessing steps to  44 apply to a document.  45  (...)  59  preprocessed string  60 """  61 if lower: ---> 62 doc = doc.lower()  63 if accent_function is not None:  64 doc = accent_function(doc) AttributeError: 'int' object has no attribute 'lower' Error: 'int' object has no attribute 'lower'
0.135941
513,785,856
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (2, 0)\t2.0\n (2, 1)\t3.0\n (2, 3)\t1.0\n (3, 0)\t3.0\n (3, 1)\t4.0\n (3, 3)\t1.0\n (4, 0)\t4.0\n (4, 1)\t5.0\n (4, 3)\t1.0\n (4, 4)\t1.0\n (5, 0)\t5.0\n (5, 1)\t6.0\n (5, 3)\t1.0\n (6, 0)\t6.0\n (6, 1)\t7.0\n (6, 3)\t1.0\n (6, 7)\t1.0\n (7, 0)\t7.0\n :\t:\n (5827, 1)\t-1.0\n (5827, 3)\t23.0\n (5827, 4)\t8.0\n (5827, 5)\t1.0\n (5828, 0)\t27.0\n (5828, 1)\t-1.0\n (5828, 3)\t2.0\n (5828, 4)\t1.0\n (5829, 0)\t29.0\n (5829, 1)\t-1.0\n (5829, 3)\t2.0\n (5829, 4)\t1.0\n (5830, 0)\t31.0\n (5830, 1)\t-1.0\n (5830, 3)\t3.0\n (5830, 4)\t2.0\n (5831, 0)\t33.0\n (5831, 1)\t-1.0\n (5831, 2)\t5.0\n (5831, 3)\t17.0\n (5831, 4)\t14.0\n (5832, 0)\t35.0\n (5832, 1)\t-1.0\n (5832, 3)\t2.0\n (5832, 4)\t1.0" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff72bb8ee0>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
4a38229fcf83d1a4e2df6411d45fb864
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
def transform(X, text_column, vectorizer): X2 = vectorizer.transform(text_column) return hstack((X, X2)) vectorizer1 = TfidfVectorizer() vectorizer2 = TfidfVectorizer() vectorizer3 = TfidfVectorizer() X = scipy.sparse.csr_matrix(train_features[train_columns].values) X1 = vectorizer.fit_transform(train_features['text']) # X2 = vectorizer1.fit_transform(train_features['code_line_before']) # X3 = vectorizer2.fit_transform(train_features['code_line_after']) X = hstack((X, X1)) clf = lgb.LGBMClassifier() clf.fit(X, target) X = scipy.sparse.csr_matrix(validation_features[train_columns].values) X1 = vectorizer.transform(validation_features['text']) # X2 = vectorizer1.transform(validation_features['code_line_before']) # X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1)) pred = clf.predict(X) f1_score(pred, validation_features["primary_label"], average='weighted')
Out[1]: 0.7263211151032674 0.7263211151032674
2.090027
514,310,144
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t1.0\n (0, 1)\t1.0\n (0, 3)\t3.0\n (0, 1298)\t0.4684063239153756\n (0, 5937)\t0.40262793382838175\n (0, 6095)\t0.2951972669650099\n (0, 7245)\t0.5449951150503903\n (0, 8226)\t0.19886603439448539\n (0, 8341)\t0.2595876232684062\n (0, 9191)\t0.20743273292549605\n (0, 9587)\t0.2904537627332517\n (1, 0)\t2.0\n (1, 1)\t2.0\n (1, 3)\t2.0\n (1, 4)\t2.0\n (1, 257)\t0.35096844361560114\n (1, 652)\t0.46113192379881973\n (1, 3327)\t0.5376132821974858\n (1, 6714)\t0.37372210262187755\n (1, 9842)\t0.48526513294937157\n (2, 0)\t3.0\n (2, 1)\t3.0\n (2, 3)\t3.0\n (2, 4)\t1.0\n (2, 6)\t1.0\n :\t:\n (1925, 9424)\t0.08032972095612202\n (1925, 11925)\t0.13338612377037476\n (1925, 12566)\t0.13393599104709625\n (1926, 0)\t38.0\n (1926, 1)\t19.0\n (1926, 3)\t13.0\n (1926, 4)\t7.0\n (1926, 7)\t1.0\n (1926, 2198)\t0.4290674719642767\n (1926, 2808)\t0.17328956690930403\n (1926, 3944)\t0.08508805077240403\n (1926, 4569)\t0.2860449813095178\n (1926, 4718)\t0.15322564033027966\n (1926, 5798)\t0.13432272315730615\n (1926, 5966)\t0.20000268513683664\n (1926, 6288)\t0.11506224808879674\n (1926, 6438)\t0.3158371618364492\n (1926, 6555)\t0.08705576153266781\n (1926, 8198)\t0.08942017334143355\n (1926, 9424)\t0.05582587530511901\n (1926, 11126)\t0.11208002344181602\n (1926, 11418)\t0.11711924944011864\n (1926, 11925)\t0.1853958167514489\n (1926, 12566)\t0.09308004367582572\n (1926, 13217)\t0.6436539203384485" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 1289)\t0.4684063239153756\n (0, 5928)\t0.40262793382838175\n (0, 6086)\t0.2951972669650099\n (0, 7236)\t0.5449951150503903\n (0, 8217)\t0.19886603439448539\n (0, 8332)\t0.2595876232684062\n (0, 9182)\t0.20743273292549605\n (0, 9578)\t0.2904537627332517\n (1, 248)\t0.35096844361560114\n (1, 643)\t0.46113192379881973\n (1, 3318)\t0.5376132821974858\n (1, 6705)\t0.37372210262187755\n (1, 9833)\t0.48526513294937157\n (2, 3318)\t0.7636757337870085\n (2, 5955)\t0.2479937779334553\n (2, 6705)\t0.2654347561741851\n (2, 7565)\t0.3825213673969192\n (2, 8217)\t0.13736747225775786\n (2, 9182)\t0.2865699039280902\n (2, 10890)\t0.193721762223214\n (3, 2501)\t0.4040519214171424\n (3, 3318)\t0.46024711749197794\n (3, 5955)\t0.29891854985051036\n (3, 7565)\t0.4610709727556278\n (3, 9182)\t0.5181242498912839\n :\t:\n (1925, 4709)\t0.22048150367157496\n (1925, 5789)\t0.09664073165283109\n (1925, 5957)\t0.2877905594799338\n (1925, 6429)\t0.757447776657583\n (1925, 8189)\t0.12866968109511678\n (1925, 9415)\t0.08032972095612202\n (1925, 11916)\t0.13338612377037476\n (1925, 12557)\t0.13393599104709625\n (1926, 2189)\t0.4290674719642767\n (1926, 2799)\t0.17328956690930403\n (1926, 3935)\t0.08508805077240403\n (1926, 4560)\t0.2860449813095178\n (1926, 4709)\t0.15322564033027966\n (1926, 5789)\t0.13432272315730615\n (1926, 5957)\t0.20000268513683664\n (1926, 6279)\t0.11506224808879674\n (1926, 6429)\t0.3158371618364492\n (1926, 6546)\t0.08705576153266781\n (1926, 8189)\t0.08942017334143355\n (1926, 9415)\t0.05582587530511901\n (1926, 11117)\t0.11208002344181602\n (1926, 11409)\t0.11711924944011864\n (1926, 11916)\t0.1853958167514489\n (1926, 12557)\t0.09308004367582572\n (1926, 13208)\t0.6436539203384485" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15528, "type": "ndarray", "value": "['helper_functions' 'data_preprocessing' 'result_visualization' ...\n 'data_exploration' 'data_exploration' 'data_exploration']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff717c5430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
d9825efe0222bf599d2ccc12a0e78e52
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
X = scipy.sparse.csr_matrix(test_features[train_columns].values) X1 = vectorizer.transform(test_features['text']) # X2 = vectorizer1.transform(validation_features['code_line_before']) # X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1)) pred = clf.predict(X)
0.052523
514,310,144
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t2.0\n (0, 1)\t1.0\n (0, 3)\t9.0\n (0, 4)\t1.0\n (0, 1298)\t0.15885296956008174\n (0, 1425)\t0.3496121221457142\n (0, 4304)\t0.1824194221358756\n (0, 4708)\t0.17829403023019316\n (0, 4799)\t0.07439651573307421\n (0, 5937)\t0.273090433031957\n (0, 6095)\t0.10011171939660647\n (0, 7245)\t0.2772403616303452\n (0, 8226)\t0.06744242871048134\n (0, 8341)\t0.08803524357344077\n (0, 9191)\t0.07034769585034792\n (0, 9587)\t0.09850303118113365\n (0, 9894)\t0.49373696586116833\n (0, 10511)\t0.4063046855578408\n (0, 10759)\t0.4063046855578408\n (0, 11925)\t0.11555863418791022\n (0, 12487)\t0.0789073856360859\n (1, 0)\t4.0\n (1, 1)\t2.0\n (1, 3)\t1.0\n (1, 4)\t1.0\n :\t:\n (1916, 1)\t-1.0\n (1916, 3)\t18.0\n (1916, 4)\t1.0\n (1916, 71)\t0.23299760096642663\n (1916, 136)\t0.24099465932818226\n (1916, 228)\t0.26299734678948977\n (1916, 274)\t0.2170675543063656\n (1916, 323)\t0.16178690217359176\n (1916, 484)\t0.24099465932818226\n (1916, 507)\t0.22104062899140903\n (1916, 508)\t0.23725585262958482\n (1916, 1655)\t0.2850000342507972\n (1916, 2627)\t0.2721292871708448\n (1916, 5271)\t0.245233368769108\n (1916, 6594)\t0.20122799384649304\n (1916, 6991)\t0.245233368769108\n (1916, 11202)\t0.26299734678948977\n (1916, 11203)\t0.2850000342507972\n (1916, 12931)\t0.21525316516827733\n (1916, 13715)\t0.26299734678948977\n (1917, 0)\t53.0\n (1917, 1)\t-1.0\n (1917, 3)\t1.0\n (1917, 9318)\t0.8143019942915565\n (1917, 9424)\t0.5804414372637382" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 1289)\t0.15885296956008174\n (0, 1416)\t0.3496121221457142\n (0, 4295)\t0.1824194221358756\n (0, 4699)\t0.17829403023019316\n (0, 4790)\t0.07439651573307421\n (0, 5928)\t0.273090433031957\n (0, 6086)\t0.10011171939660647\n (0, 7236)\t0.2772403616303452\n (0, 8217)\t0.06744242871048134\n (0, 8332)\t0.08803524357344077\n (0, 9182)\t0.07034769585034792\n (0, 9578)\t0.09850303118113365\n (0, 9885)\t0.49373696586116833\n (0, 10502)\t0.4063046855578408\n (0, 10750)\t0.4063046855578408\n (0, 11916)\t0.11555863418791022\n (0, 12478)\t0.0789073856360859\n (1, 31)\t0.4095686187958287\n (1, 62)\t0.25331785011924673\n (1, 5392)\t0.6197110670742616\n (1, 5401)\t0.6197110670742616\n (2, 5392)\t0.25111811752889757\n (2, 5401)\t0.25111811752889757\n (2, 8150)\t0.5004244472233608\n (2, 10190)\t0.789591511301052\n :\t:\n (1912, 5756)\t0.3025167444786825\n (1912, 10465)\t0.9531440705947971\n (1914, 9309)\t0.8143019942915565\n (1914, 9415)\t0.5804414372637382\n (1915, 9309)\t0.8143019942915565\n (1915, 9415)\t0.5804414372637382\n (1916, 62)\t0.23299760096642663\n (1916, 127)\t0.24099465932818226\n (1916, 219)\t0.26299734678948977\n (1916, 265)\t0.2170675543063656\n (1916, 314)\t0.16178690217359176\n (1916, 475)\t0.24099465932818226\n (1916, 498)\t0.22104062899140903\n (1916, 499)\t0.23725585262958482\n (1916, 1646)\t0.2850000342507972\n (1916, 2618)\t0.2721292871708448\n (1916, 5262)\t0.245233368769108\n (1916, 6585)\t0.20122799384649304\n (1916, 6982)\t0.245233368769108\n (1916, 11193)\t0.26299734678948977\n (1916, 11194)\t0.2850000342507972\n (1916, 12922)\t0.21525316516827733\n (1916, 13706)\t0.26299734678948977\n (1917, 9309)\t0.8143019942915565\n (1917, 9415)\t0.5804414372637382" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15456, "type": "ndarray", "value": "['helper_functions' 'modelling' 'data_preprocessing' ... 'prediction'\n 'data_preprocessing' 'prediction']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff717c5430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
82b5466887819e1726d17d0ece0aa9af
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
X = scipy.sparse.csr_matrix(test_features[train_columns].values) X1 = vectorizer.transform(test_features['text']) # X2 = vectorizer1.transform(validation_features['code_line_before']) # X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1)) pred = clf.predict(X) pred
Out[1]: array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object) array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object)
0.053625
515,620,864
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t2.0\n (0, 1)\t1.0\n (0, 3)\t9.0\n (0, 4)\t1.0\n (0, 1298)\t0.15885296956008174\n (0, 1425)\t0.3496121221457142\n (0, 4304)\t0.1824194221358756\n (0, 4708)\t0.17829403023019316\n (0, 4799)\t0.07439651573307421\n (0, 5937)\t0.273090433031957\n (0, 6095)\t0.10011171939660647\n (0, 7245)\t0.2772403616303452\n (0, 8226)\t0.06744242871048134\n (0, 8341)\t0.08803524357344077\n (0, 9191)\t0.07034769585034792\n (0, 9587)\t0.09850303118113365\n (0, 9894)\t0.49373696586116833\n (0, 10511)\t0.4063046855578408\n (0, 10759)\t0.4063046855578408\n (0, 11925)\t0.11555863418791022\n (0, 12487)\t0.0789073856360859\n (1, 0)\t4.0\n (1, 1)\t2.0\n (1, 3)\t1.0\n (1, 4)\t1.0\n :\t:\n (1916, 1)\t-1.0\n (1916, 3)\t18.0\n (1916, 4)\t1.0\n (1916, 71)\t0.23299760096642663\n (1916, 136)\t0.24099465932818226\n (1916, 228)\t0.26299734678948977\n (1916, 274)\t0.2170675543063656\n (1916, 323)\t0.16178690217359176\n (1916, 484)\t0.24099465932818226\n (1916, 507)\t0.22104062899140903\n (1916, 508)\t0.23725585262958482\n (1916, 1655)\t0.2850000342507972\n (1916, 2627)\t0.2721292871708448\n (1916, 5271)\t0.245233368769108\n (1916, 6594)\t0.20122799384649304\n (1916, 6991)\t0.245233368769108\n (1916, 11202)\t0.26299734678948977\n (1916, 11203)\t0.2850000342507972\n (1916, 12931)\t0.21525316516827733\n (1916, 13715)\t0.26299734678948977\n (1917, 0)\t53.0\n (1917, 1)\t-1.0\n (1917, 3)\t1.0\n (1917, 9318)\t0.8143019942915565\n (1917, 9424)\t0.5804414372637382" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 1289)\t0.15885296956008174\n (0, 1416)\t0.3496121221457142\n (0, 4295)\t0.1824194221358756\n (0, 4699)\t0.17829403023019316\n (0, 4790)\t0.07439651573307421\n (0, 5928)\t0.273090433031957\n (0, 6086)\t0.10011171939660647\n (0, 7236)\t0.2772403616303452\n (0, 8217)\t0.06744242871048134\n (0, 8332)\t0.08803524357344077\n (0, 9182)\t0.07034769585034792\n (0, 9578)\t0.09850303118113365\n (0, 9885)\t0.49373696586116833\n (0, 10502)\t0.4063046855578408\n (0, 10750)\t0.4063046855578408\n (0, 11916)\t0.11555863418791022\n (0, 12478)\t0.0789073856360859\n (1, 31)\t0.4095686187958287\n (1, 62)\t0.25331785011924673\n (1, 5392)\t0.6197110670742616\n (1, 5401)\t0.6197110670742616\n (2, 5392)\t0.25111811752889757\n (2, 5401)\t0.25111811752889757\n (2, 8150)\t0.5004244472233608\n (2, 10190)\t0.789591511301052\n :\t:\n (1912, 5756)\t0.3025167444786825\n (1912, 10465)\t0.9531440705947971\n (1914, 9309)\t0.8143019942915565\n (1914, 9415)\t0.5804414372637382\n (1915, 9309)\t0.8143019942915565\n (1915, 9415)\t0.5804414372637382\n (1916, 62)\t0.23299760096642663\n (1916, 127)\t0.24099465932818226\n (1916, 219)\t0.26299734678948977\n (1916, 265)\t0.2170675543063656\n (1916, 314)\t0.16178690217359176\n (1916, 475)\t0.24099465932818226\n (1916, 498)\t0.22104062899140903\n (1916, 499)\t0.23725585262958482\n (1916, 1646)\t0.2850000342507972\n (1916, 2618)\t0.2721292871708448\n (1916, 5262)\t0.245233368769108\n (1916, 6585)\t0.20122799384649304\n (1916, 6982)\t0.245233368769108\n (1916, 11193)\t0.26299734678948977\n (1916, 11194)\t0.2850000342507972\n (1916, 12922)\t0.21525316516827733\n (1916, 13706)\t0.26299734678948977\n (1917, 9309)\t0.8143019942915565\n (1917, 9415)\t0.5804414372637382" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15456, "type": "ndarray", "value": "['helper_functions' 'modelling' 'data_preprocessing' ... 'prediction'\n 'data_preprocessing' 'prediction']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff717c5430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
17f615500d97f6778e33ec97469e7b84
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
X = scipy.sparse.csr_matrix(test_features[train_columns].values) X1 = vectorizer.transform(test_features['text']) # X2 = vectorizer1.transform(validation_features['code_line_before']) # X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1)) pred = clf.predict(X) pred
Out[1]: array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object) array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object)
0.05323
515,620,864
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t2.0\n (0, 1)\t1.0\n (0, 3)\t9.0\n (0, 4)\t1.0\n (0, 1298)\t0.15885296956008174\n (0, 1425)\t0.3496121221457142\n (0, 4304)\t0.1824194221358756\n (0, 4708)\t0.17829403023019316\n (0, 4799)\t0.07439651573307421\n (0, 5937)\t0.273090433031957\n (0, 6095)\t0.10011171939660647\n (0, 7245)\t0.2772403616303452\n (0, 8226)\t0.06744242871048134\n (0, 8341)\t0.08803524357344077\n (0, 9191)\t0.07034769585034792\n (0, 9587)\t0.09850303118113365\n (0, 9894)\t0.49373696586116833\n (0, 10511)\t0.4063046855578408\n (0, 10759)\t0.4063046855578408\n (0, 11925)\t0.11555863418791022\n (0, 12487)\t0.0789073856360859\n (1, 0)\t4.0\n (1, 1)\t2.0\n (1, 3)\t1.0\n (1, 4)\t1.0\n :\t:\n (1916, 1)\t-1.0\n (1916, 3)\t18.0\n (1916, 4)\t1.0\n (1916, 71)\t0.23299760096642663\n (1916, 136)\t0.24099465932818226\n (1916, 228)\t0.26299734678948977\n (1916, 274)\t0.2170675543063656\n (1916, 323)\t0.16178690217359176\n (1916, 484)\t0.24099465932818226\n (1916, 507)\t0.22104062899140903\n (1916, 508)\t0.23725585262958482\n (1916, 1655)\t0.2850000342507972\n (1916, 2627)\t0.2721292871708448\n (1916, 5271)\t0.245233368769108\n (1916, 6594)\t0.20122799384649304\n (1916, 6991)\t0.245233368769108\n (1916, 11202)\t0.26299734678948977\n (1916, 11203)\t0.2850000342507972\n (1916, 12931)\t0.21525316516827733\n (1916, 13715)\t0.26299734678948977\n (1917, 0)\t53.0\n (1917, 1)\t-1.0\n (1917, 3)\t1.0\n (1917, 9318)\t0.8143019942915565\n (1917, 9424)\t0.5804414372637382" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 1289)\t0.15885296956008174\n (0, 1416)\t0.3496121221457142\n (0, 4295)\t0.1824194221358756\n (0, 4699)\t0.17829403023019316\n (0, 4790)\t0.07439651573307421\n (0, 5928)\t0.273090433031957\n (0, 6086)\t0.10011171939660647\n (0, 7236)\t0.2772403616303452\n (0, 8217)\t0.06744242871048134\n (0, 8332)\t0.08803524357344077\n (0, 9182)\t0.07034769585034792\n (0, 9578)\t0.09850303118113365\n (0, 9885)\t0.49373696586116833\n (0, 10502)\t0.4063046855578408\n (0, 10750)\t0.4063046855578408\n (0, 11916)\t0.11555863418791022\n (0, 12478)\t0.0789073856360859\n (1, 31)\t0.4095686187958287\n (1, 62)\t0.25331785011924673\n (1, 5392)\t0.6197110670742616\n (1, 5401)\t0.6197110670742616\n (2, 5392)\t0.25111811752889757\n (2, 5401)\t0.25111811752889757\n (2, 8150)\t0.5004244472233608\n (2, 10190)\t0.789591511301052\n :\t:\n (1912, 5756)\t0.3025167444786825\n (1912, 10465)\t0.9531440705947971\n (1914, 9309)\t0.8143019942915565\n (1914, 9415)\t0.5804414372637382\n (1915, 9309)\t0.8143019942915565\n (1915, 9415)\t0.5804414372637382\n (1916, 62)\t0.23299760096642663\n (1916, 127)\t0.24099465932818226\n (1916, 219)\t0.26299734678948977\n (1916, 265)\t0.2170675543063656\n (1916, 314)\t0.16178690217359176\n (1916, 475)\t0.24099465932818226\n (1916, 498)\t0.22104062899140903\n (1916, 499)\t0.23725585262958482\n (1916, 1646)\t0.2850000342507972\n (1916, 2618)\t0.2721292871708448\n (1916, 5262)\t0.245233368769108\n (1916, 6585)\t0.20122799384649304\n (1916, 6982)\t0.245233368769108\n (1916, 11193)\t0.26299734678948977\n (1916, 11194)\t0.2850000342507972\n (1916, 12922)\t0.21525316516827733\n (1916, 13706)\t0.26299734678948977\n (1917, 9309)\t0.8143019942915565\n (1917, 9415)\t0.5804414372637382" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15456, "type": "ndarray", "value": "['helper_functions' 'modelling' 'data_preprocessing' ... 'prediction'\n 'data_preprocessing' 'prediction']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff717c5430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
be9921194652238ca89a957442060298
388ef554-e3e7-4410-89ac-d6ad4aeaec6c
X = scipy.sparse.csr_matrix(test_features[train_columns].values) X1 = vectorizer.transform(test_features['text']) # X2 = vectorizer1.transform(validation_features['code_line_before']) # X3 = vectorizer2.transform(validation_features['code_line_after']) X = hstack((X, X1)) pred = clf.predict(X) pred
Out[1]: array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object) array(['helper_functions', 'modelling', 'data_preprocessing', ..., 'prediction', 'data_preprocessing', 'prediction'], dtype=object)
0.051454
515,620,864
{ "CountVectorizer": null, "DF": null, "MultinomialNB": null, "RandomForestClassifier": null, "Readliner": null, "TfidfTransformer": null, "TfidfVectorizer": { "name": "TfidfVectorizer", "size": 2008, "type": "type", "value": "<class 'sklearn.feature_extraction.text.TfidfVectorizer'>" }, "Timestamp": null, "X": { "name": "X", "size": 48, "type": "csr_matrix", "value": " (0, 0)\t2.0\n (0, 1)\t1.0\n (0, 3)\t9.0\n (0, 4)\t1.0\n (0, 1298)\t0.15885296956008174\n (0, 1425)\t0.3496121221457142\n (0, 4304)\t0.1824194221358756\n (0, 4708)\t0.17829403023019316\n (0, 4799)\t0.07439651573307421\n (0, 5937)\t0.273090433031957\n (0, 6095)\t0.10011171939660647\n (0, 7245)\t0.2772403616303452\n (0, 8226)\t0.06744242871048134\n (0, 8341)\t0.08803524357344077\n (0, 9191)\t0.07034769585034792\n (0, 9587)\t0.09850303118113365\n (0, 9894)\t0.49373696586116833\n (0, 10511)\t0.4063046855578408\n (0, 10759)\t0.4063046855578408\n (0, 11925)\t0.11555863418791022\n (0, 12487)\t0.0789073856360859\n (1, 0)\t4.0\n (1, 1)\t2.0\n (1, 3)\t1.0\n (1, 4)\t1.0\n :\t:\n (1916, 1)\t-1.0\n (1916, 3)\t18.0\n (1916, 4)\t1.0\n (1916, 71)\t0.23299760096642663\n (1916, 136)\t0.24099465932818226\n (1916, 228)\t0.26299734678948977\n (1916, 274)\t0.2170675543063656\n (1916, 323)\t0.16178690217359176\n (1916, 484)\t0.24099465932818226\n (1916, 507)\t0.22104062899140903\n (1916, 508)\t0.23725585262958482\n (1916, 1655)\t0.2850000342507972\n (1916, 2627)\t0.2721292871708448\n (1916, 5271)\t0.245233368769108\n (1916, 6594)\t0.20122799384649304\n (1916, 6991)\t0.245233368769108\n (1916, 11202)\t0.26299734678948977\n (1916, 11203)\t0.2850000342507972\n (1916, 12931)\t0.21525316516827733\n (1916, 13715)\t0.26299734678948977\n (1917, 0)\t53.0\n (1917, 1)\t-1.0\n (1917, 3)\t1.0\n (1917, 9318)\t0.8143019942915565\n (1917, 9424)\t0.5804414372637382" }, "X1": { "name": "X1", "size": 48, "type": "csr_matrix", "value": " (0, 1289)\t0.15885296956008174\n (0, 1416)\t0.3496121221457142\n (0, 4295)\t0.1824194221358756\n (0, 4699)\t0.17829403023019316\n (0, 4790)\t0.07439651573307421\n (0, 5928)\t0.273090433031957\n (0, 6086)\t0.10011171939660647\n (0, 7236)\t0.2772403616303452\n (0, 8217)\t0.06744242871048134\n (0, 8332)\t0.08803524357344077\n (0, 9182)\t0.07034769585034792\n (0, 9578)\t0.09850303118113365\n (0, 9885)\t0.49373696586116833\n (0, 10502)\t0.4063046855578408\n (0, 10750)\t0.4063046855578408\n (0, 11916)\t0.11555863418791022\n (0, 12478)\t0.0789073856360859\n (1, 31)\t0.4095686187958287\n (1, 62)\t0.25331785011924673\n (1, 5392)\t0.6197110670742616\n (1, 5401)\t0.6197110670742616\n (2, 5392)\t0.25111811752889757\n (2, 5401)\t0.25111811752889757\n (2, 8150)\t0.5004244472233608\n (2, 10190)\t0.789591511301052\n :\t:\n (1912, 5756)\t0.3025167444786825\n (1912, 10465)\t0.9531440705947971\n (1914, 9309)\t0.8143019942915565\n (1914, 9415)\t0.5804414372637382\n (1915, 9309)\t0.8143019942915565\n (1915, 9415)\t0.5804414372637382\n (1916, 62)\t0.23299760096642663\n (1916, 127)\t0.24099465932818226\n (1916, 219)\t0.26299734678948977\n (1916, 265)\t0.2170675543063656\n (1916, 314)\t0.16178690217359176\n (1916, 475)\t0.24099465932818226\n (1916, 498)\t0.22104062899140903\n (1916, 499)\t0.23725585262958482\n (1916, 1646)\t0.2850000342507972\n (1916, 2618)\t0.2721292871708448\n (1916, 5262)\t0.245233368769108\n (1916, 6585)\t0.20122799384649304\n (1916, 6982)\t0.245233368769108\n (1916, 11193)\t0.26299734678948977\n (1916, 11194)\t0.2850000342507972\n (1916, 12922)\t0.21525316516827733\n (1916, 13706)\t0.26299734678948977\n (1917, 9309)\t0.8143019942915565\n (1917, 9415)\t0.5804414372637382" }, "X2": { "name": "X2", "size": 48, "type": "csr_matrix", "value": " (0, 5928)\t0.5163862850483787\n (0, 8786)\t0.3558057453091318\n (0, 1289)\t0.600749677748211\n (0, 8936)\t0.2644837387295696\n (0, 8332)\t0.3329314167288935\n (0, 8217)\t0.25505357203318946\n (1, 8936)\t0.13504093794218394\n (1, 6492)\t0.39227128128564803\n (1, 12722)\t0.15070921240643548\n (1, 7670)\t0.37455610991232274\n (1, 9862)\t0.12763921978626358\n (1, 9746)\t0.39227128128564803\n (1, 12075)\t0.08913990946874038\n (1, 9900)\t0.19020164731249567\n (1, 3075)\t0.06905797226187309\n (1, 10704)\t0.2534189679486199\n (1, 7898)\t0.2507702182943471\n (1, 12704)\t0.3375368288426258\n (1, 9833)\t0.16336991054449349\n (1, 6275)\t0.14695505860734503\n (1, 3994)\t0.1418516267197728\n (1, 6262)\t0.16585135515189833\n (1, 675)\t0.16585135515189833\n (1, 2657)\t0.148136183778573\n (1, 12603)\t0.18099349789736122\n :\t:\n (5831, 9323)\t0.29667945547250524\n (5832, 8217)\t0.16028844651757307\n (5832, 12075)\t0.10971765781838334\n (5832, 7323)\t0.1147810162510238\n (5832, 4709)\t0.07566267269096397\n (5832, 9415)\t0.08270028936005187\n (5832, 11777)\t0.11982910271737358\n (5832, 1076)\t0.15181520730198833\n (5832, 2399)\t0.16771609806839577\n (5832, 853)\t0.3850659908550527\n (5832, 4724)\t0.11653251292101924\n (5832, 2627)\t0.18550009637025716\n (5832, 13189)\t0.12148662041890751\n (5832, 3509)\t0.19813777844657318\n (5832, 11958)\t0.11063613914309335\n (5832, 1426)\t0.16019848675176263\n (5832, 6228)\t0.12660744935867593\n (5832, 11323)\t0.1473973483809412\n (5832, 1136)\t0.2009707623161172\n (5832, 9136)\t0.18909055223525678\n (5832, 7237)\t0.2041377688368914\n (5832, 3362)\t0.2167754509132074\n (5832, 11213)\t0.41545644940378196\n (5832, 11464)\t0.3864708586863744\n (5832, 3350)\t0.2414131137701598" }, "X3": { "name": "X3", "size": 48, "type": "csr_matrix", "value": " (0, 1)\t1.0\n (0, 3)\t2.0\n (0, 5937)\t0.5163862850483787\n (0, 8795)\t0.3558057453091318\n (0, 1298)\t0.600749677748211\n (0, 8945)\t0.2644837387295696\n (0, 8341)\t0.3329314167288935\n (0, 8226)\t0.25505357203318946\n (1, 0)\t1.0\n (1, 1)\t2.0\n (1, 2)\t1.0\n (1, 3)\t4.0\n (1, 4)\t4.0\n (1, 8945)\t0.13504093794218394\n (1, 6501)\t0.39227128128564803\n (1, 12731)\t0.15070921240643548\n (1, 7679)\t0.37455610991232274\n (1, 9871)\t0.12763921978626358\n (1, 9755)\t0.39227128128564803\n (1, 12084)\t0.08913990946874038\n (1, 9909)\t0.19020164731249567\n (1, 3084)\t0.06905797226187309\n (1, 10713)\t0.2534189679486199\n (1, 7907)\t0.2507702182943471\n (1, 12713)\t0.3375368288426258\n :\t:\n (5832, 4)\t1.0\n (5832, 8226)\t0.16028844651757307\n (5832, 12084)\t0.10971765781838334\n (5832, 7332)\t0.1147810162510238\n (5832, 4718)\t0.07566267269096397\n (5832, 9424)\t0.08270028936005187\n (5832, 11786)\t0.11982910271737358\n (5832, 1085)\t0.15181520730198833\n (5832, 2408)\t0.16771609806839577\n (5832, 862)\t0.3850659908550527\n (5832, 4733)\t0.11653251292101924\n (5832, 2636)\t0.18550009637025716\n (5832, 13198)\t0.12148662041890751\n (5832, 3518)\t0.19813777844657318\n (5832, 11967)\t0.11063613914309335\n (5832, 1435)\t0.16019848675176263\n (5832, 6237)\t0.12660744935867593\n (5832, 11332)\t0.1473973483809412\n (5832, 1145)\t0.2009707623161172\n (5832, 9145)\t0.18909055223525678\n (5832, 7246)\t0.2041377688368914\n (5832, 3371)\t0.2167754509132074\n (5832, 11222)\t0.41545644940378196\n (5832, 11473)\t0.3864708586863744\n (5832, 3359)\t0.2414131137701598" }, "X_columns": null, "X_columns_text": null, "X_test": null, "X_train": null, "X_val": null, "accuracy_score": { "name": "accuracy_score", "size": 136, "type": "function", "value": "<function accuracy_score at 0xffff7244be50>" }, "act": null, "action": null, "action_counts": null, "action_durations": null, "action_name": null, "action_name_col": null, "action_time": null, "action_time_col": null, "actions": null, "actions_per_day": null, "ax": null, "class_map": null, "clf": { "name": "clf", "size": 48, "type": "LGBMClassifier", "value": "LGBMClassifier()" }, "clf_c": null, "clf_ft": null, "cnt": null, "contents": null, "corpus": { "name": "corpus", "size": 64, "type": "list", "value": "['I want some pitsa']" }, "corrupt": null, "count": null, "count_all": null, "counts": null, "curr_session": null, "cv": null, "cv_c": null, "cv_ft": null, "daily_actions": null, "daily_counts": null, "data": null, "data_path": null, "datetime": null, "day": null, "day_counts": null, "deltas": null, "df": null, "df2": null, "df_temp": null, "df_timed": null, "df_top_users": null, "durations": null, "end_mask": null, "f": null, "f1_score": { "name": "f1_score", "size": 136, "type": "function", "value": "<function f1_score at 0xffff72456670>" }, "f_statistic": null, "features_path": { "name": "features_path", "size": 60, "type": "str", "value": "data/task2/" }, "fig": null, "generate_tokens": null, "group": null, "grouped": null, "hstack": { "name": "hstack", "size": 136, "type": "function", "value": "<function hstack at 0xffffa48fed30>" }, "i": null, "ind": null, "krdl": null, "l": null, "line": null, "lines": null, "lines2": null, "mask": null, "mean_duration": null, "median_duration": null, "mode_duration": null, "myfile": null, "myzip": null, "name": null, "nb_prd": null, "new_row": null, "p_test": null, "p_val": null, "p_value": null, "parse": null, "parsed": null, "partial": null, "parts": null, "pattern": null, "pivot_counts": null, "pred": { "name": "pred", "size": 15456, "type": "ndarray", "value": "['helper_functions' 'modelling' 'data_preprocessing' ... 'prediction'\n 'data_preprocessing' 'prediction']" }, "prepare_X": null, "prepare_dataset_RF": null, "prepare_y": null, "r": null, "repeats": null, "rfclf": null, "row": null, "session_df": null, "session_durations": null, "session_num": null, "session_num_col": null, "split_lines": null, "stats": null, "t_stat": null, "target": { "name": "target", "size": 416963, "type": "Series", "value": "0 helper_functions\n1 load_data\n2 data_exploration\n3 data_exploration\n4 data_preprocessing\n ... \n5828 evaluation\n5829 modelling\n5830 data_preprocessing\n5831 modelling\n5832 evaluation\nName: primary_label, Length: 5833, dtype: object" }, "target_drop": { "name": "target_drop", "size": 152, "type": "list", "value": "['primary_label', 'load_data', 'helper_functions', 'data_preprocessing', 'data_exploration', 'modelling', 'prediction', 'evaluation', 'result_visualization', 'save_results', 'comment_only']" }, "test_features": { "name": "test_features", "size": 1935634, "type": "DataFrame", "value": " filename ... packages_info\n0 nb_28545.ipynb ... [harmonic ======== Planning, Matplotlib strive...\n1 nb_28545.ipynb ... []\n2 nb_28545.ipynb ... []\n3 nb_28545.ipynb ... []\n4 nb_28545.ipynb ... []\n... ... ... ...\n1913 nb_96779.ipynb ... []\n1914 nb_96779.ipynb ... []\n1915 nb_96779.ipynb ... []\n1916 nb_96779.ipynb ... []\n1917 nb_96779.ipynb ... []\n\n[1918 rows x 21 columns]" }, "text": { "name": "text", "size": 786640, "type": "Series", "value": "0 [import pandas as pd, import numpy as np]\n1 [l_cols = ['user_id','movie_id','rating'], r_c...\n2 [l.head()]\n3 [r.head()]\n4 [movies = pd.merge(l,r)]\n ... \n5828 [plot_confusion_matrix(cm, title=\"Confusion ma...\n5829 [srm = brainiak.funcalign.srm.DetSRM(n_iter=10...\n5830 [image_data_shared = srm.transform(image_data)...\n5831 [accuracy = np.zeros((subjects,)), cm = [None]...\n5832 [plot_confusion_matrix(cm, title=\"Confusion ma...\nName: text, Length: 5833, dtype: object" }, "text_counts": null, "tf_transformer": null, "tf_transformer_c": null, "tf_transformer_ft": null, "time": null, "tokenize_py": null, "top_user_daily_actions": null, "top_users": null, "tqdm": null, "train_columns": { "name": "train_columns", "size": 152, "type": "list", "value": "['cell_number', 'execution_count', 'linesofcomment', 'linesofcode', 'variable_count', 'function_count', 'display_data', 'stream', 'error']" }, "train_features": { "name": "train_features", "size": 5814341, "type": "DataFrame", "value": " filename ... primary_label\n0 nb_54880.ipynb ... helper_functions\n1 nb_54880.ipynb ... load_data\n2 nb_54880.ipynb ... data_exploration\n3 nb_54880.ipynb ... data_exploration\n4 nb_54880.ipynb ... data_preprocessing\n... ... ... ...\n5828 nb_95821.ipynb ... evaluation\n5829 nb_95821.ipynb ... modelling\n5830 nb_95821.ipynb ... data_preprocessing\n5831 nb_95821.ipynb ... modelling\n5832 nb_95821.ipynb ... evaluation\n\n[5833 rows x 22 columns]" }, "train_test_split": { "name": "train_test_split", "size": 136, "type": "function", "value": "<function train_test_split at 0xffff71a97e50>" }, "transform": { "name": "transform", "size": 136, "type": "function", "value": "<function transform at 0xffff717c5430>" }, "txt": null, "user_daily_actions": null, "user_id": null, "user_id_col": null, "user_total_actions": null, "validation_features": { "name": "validation_features", "size": 2174322, "type": "DataFrame", "value": " filename cell_type ... save_results comment_only\n0 nb_128972.ipynb code ... 0 0\n1 nb_128972.ipynb code ... 0 0\n2 nb_128972.ipynb code ... 0 0\n3 nb_128972.ipynb code ... 0 0\n4 nb_128972.ipynb code ... 0 0\n... ... ... ... ... ...\n1922 nb_750781.ipynb code ... 0 0\n1923 nb_750781.ipynb code ... 0 0\n1924 nb_750781.ipynb code ... 0 0\n1925 nb_750781.ipynb code ... 0 0\n1926 nb_750781.ipynb code ... 0 0\n\n[1927 rows x 32 columns]" }, "vectorizer": { "name": "vectorizer", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer1": { "name": "vectorizer1", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer2": { "name": "vectorizer2", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vectorizer3": { "name": "vectorizer3", "size": 48, "type": "TfidfVectorizer", "value": "TfidfVectorizer()" }, "vstack": { "name": "vstack", "size": 136, "type": "function", "value": "<function vstack at 0xffffa48fedc0>" }, "weekday_counts": null, "weekday_df": null, "y_column": null, "y_columns": null, "y_train_multi": null, "y_train_primary": null, "y_val_multi": null, "y_val_primary": null }
ec4f5edd85f0026b8889a55c0777f5d2