id
stringlengths 4
8
| image
imagewidth (px) 4
1.34k
| latex
stringlengths 90
2.83k
|
---|---|---|
AI-6336 | \begin{tabular}{|l|c|c|c|}
\hline
Pipeline component & P & R & F1 \\
\hline
Coreference resolution & 91.1 & 96.9 & 93.9 \\
Verb identification & 75.2 & 76.7 & 75.9 \\
Verb conjugation & 100.0 & 100.0 & 100.0 \\
Generation of $S(E)$ & 99.1 & 99.1 & 99.1 \\
\hline
\end{tabular} |
|
CR-759 | \begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline
Attribute & \multicolumn{4}{|l|}{130-th (var=26.20e+8)} & \multicolumn{4}{|l|}{595-th (var=11.85e+8)} \\
\hline
$|D_v|$ & 50 & 100 & 500 & 1000 & 50 & 100 & 500 & 1000 \\
\hline
B=8 & 0.8600 & 0.7800 & 0.6460 & 0.5830 & 0.6800 & 0.7100 & 0.6280 & 0.6380 \\
\hline
B=32 & 0.9000 & 0.7600 & 0.6520 & 0.6440 & 0.8400 & 0.7500 & 0.6820 & 0.6480 \\
\hline
B=$|D_v|$ & \textbf{0.9400} & \textbf{0.8400} & \textbf{0.7660} & \textbf{0.7390} & \textbf{0.9200} & \textbf{0.8500} & \textbf{0.7300} & \textbf{0.6900} \\
\hline
\end{tabular} |
|
AI-43811 | \begin{tabular}{l
c
@{\hspace*{2.0mm}}c
@{\hspace*{2.0mm}}c
@{\hspace*{2.0mm}}c
@{\hspace*{2.0mm}}c
}
\toprule
\scriptsize Name & Train & Test & Valid & Classes & Structure \\
\midrule
MNIST & 50,000 & 10,000 & 10,000 & 10 & image \\
\scriptsize{SC} & 84,843 & 11,005 & 9,981 & 35 & sound \\
IMDB & 17,500 & 25,000 & 7,500 & 2 & text \\
SST & 8,544 & 2,210 & 1,101 & 2 & tree \\
Algorithms & 136 & 43 & 34 & 6 & tree, neurotree \\
UPFD & 1,092 & 3,826 & 546 & 2 & graph \\
Iris & 96 & 30 & 24 & 3 & tabular \\
\bottomrule
\end{tabular} |
|
AI-27394 | \begin{tabular}{cccccc}
\toprule
Method & DeepISP & VDSR & SRDenseNet & RDN & Ours \\
\midrule
Time (s) & 0.2614 & 0.6892 & 0.9448 & 0.4987 & 0.647 \\
\bottomrule
\end{tabular} |
|
CV-22920 | \begin{tabular}{|c|c|c|c|c|c|}
\hline
{} & \multicolumn{2}{|c|}{RaFD} & \multicolumn{2}{|c|}{CFEED} \\
\hline
{} & PSNR$\uparrow$ & FID$\downarrow$ & PSNR$\uparrow$ & FID$\downarrow$ \\
\hline
StarGAN & 19.82 & 62.51 & 20.11 & 42.39 \\
\cline{1-5}
GANimation & 22.06 & 45.55 & 20.43 & 29.07 \\
\cline{1-5}
Cascade EF-GAN & \bf{23.07} & \bf{42.36} & \bf{21.34} & \bf{27.15} \\
\hline
\end{tabular} |
|
AI-15567 | \begin{tabular}{lc||c|cc}
& & & \multicolumn{2}{c}{CorrNet} \\
Train & Test & MultiCCA & W & W+N+Ch+L \\
\toprule
Amh & Tig & 15.5 & 28.3 & \textbf{31.7} \\
Tig & Amh & 11.1 & 12.8 & \textbf{23.3} \\
\midrule
Eng & Uig & 8.4 & \textbf{16.9} & 15.4 \\
Tur & Uig & 1.1 & 18.1 & \textbf{25.6} \\
Eng+Tur & Uig & 8.0 & 20.3 & \textbf{20.6} \\
\midrule
Eng & Tur & 20.6 & \textbf{21.4} & 17.3 \\
Uig & Tur & 10.4 & 10.1 & \textbf{17.7} \\
Eng+Uig & Tur & 18.5 & 21.1 & \textbf{29.4} \\
\end{tabular} |
|
CR-17554 | \begin{tabular}{|c|c|c|c|c|}
\hline
Model & Number of & & & Our method\tabularnewline
& iterations & & & \tabularnewline
\hline
& $10$ & $0.84$ & $0.92$ & $0.96$ \tabularnewline
Bunny & $30$ & $0.60$ & $0.85$ & $0.92$ \tabularnewline
& $50$ & $0.36$ & $0.44$ & $0.62$ \tabularnewline
\hline
& $10$ & $0.94$ & $0.95$ & $0.99$ \tabularnewline
Venus & $30$ & $0.63$ & $0.93$ & $0.97$\tabularnewline
& $50$ & $0.45$ & $0.78$ & $0.81$\tabularnewline
\hline
\end{tabular} |
|
AI-15298 | \begin{tabular}{ccccc}
\toprule
\# & $X_1$ & $X_2$ & $X_3$ & $X_4$ \\
\midrule
$3$ & 0 & 0 & 1 & 1 \\
$7$ & 0 & 0 & 0 & 0 \\
\hline
$2$ & 1 & 0 & 0 & 1 \\
$3$ & 0 & 1 & 1 & 1 \\
$9$ & 0 & 1 & 1 & 0 \\
\hline
$2$ & 1 & 1 & 0 & 1 \\
$4$ & 1 & 1 & 1 & 0 \\
\hline
0 & 1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
\bottomrule
\end{tabular} |
|
CR-44298 | \begin{tabular}{ccccccc}
\toprule
\multicolumn{6}{c}{\textbf{Untargeted-Krum}} \\
\textbf{\# Clients} & \textbf{Dataset} & \textbf{FedAvg} & \textbf{Coomed} & \textbf{FLARE} & \textbf{FedCC} \\
\midrule
\multirow{2}{*}{100} & fMNIST & 58.95 & 49.52 & 71.20 & \textbf{75.98} \\
& CIFAR10 & 30.35 & 20.34 & 19.57 & \textbf{32.65} \\ \midrule
\multirow{2}{*}{60} & fMNIST & 10.93 & 25.14 & 54.48 & \textbf{68.77} \\
& CIFAR10 & 10.00 & 10.17 & 13.24 & \textbf{29.58} \\ \midrule
\multirow{2}{*}{40} & fMNIST & 53.96 & \textbf{54.62} & 25.14 & 45.82 \\
& CIFAR10 & 16.32 & 19.68 & 20.50 & \textbf{25.52} \\
\bottomrule
\toprule
\multicolumn{6}{c}{\textbf{Untargeted-Med}} \\
\textbf{\# Clients} & \textbf{Dataset} & \textbf{FedAvg} & \textbf{Coomed} & \textbf{FLARE} & \textbf{FedCC} \\
\midrule
\multirow{2}{*}{100} & fMNIST & 11.58 & \textbf{65.13} & 60.67 & 63.02 \\
& CIFAR10 & 9.63 & 24.97 & 19.99 & \textbf{36.82} \\ \midrule
\multirow{2}{*}{60} & fMNIST & 18.47 & 38.76 & 12.35 & \textbf{54.66} \\
& CIFAR10 & 10.00 & 21.86 & 10.00 & \textbf{32.26} \\ \midrule
\multirow{2}{*}{40} & fMNIST & 12.16 & \textbf{55.21} & 12.43 & 53.41 \\
& CIFAR10 & 10.00 & 25.99 & 10.00 & \textbf{29.37} \\
\bottomrule
\end{tabular} |
|
CR-47801 | \begin{tabular}{|c|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|>{\centering\arraybackslash}m{1.5cm}|}
\hline
\textbf{\textit{Dataset}}
& \textbf{\textit{$\alpha$}}
& \textbf{\textit{LSH Shingles}}
& \textbf{\textit{LSH Jaccard Threshold}}
& \textbf{\textit{LSH Number of Permutations}}
& \textbf{\textit{$\beta$}}
& \textbf{\textit{Number of Patterns}}
& \textbf{\textit{Loss}} \\
\hline
\textbf{Zookeeper} & 0.6 & 4 & 0.7 & 16 & 0.4 & 107 & 0.0050 \\
\hline
\textbf{HPC} & 0.7 & 4 & 0.7 & 32 & 0.4 & 309 & 0.0063 \\
\hline
\textbf{BGL} & 0.7 & 4 & 0.7 & 64 & 0.5 & 1470 & 0.0026 \\
\hline
\textbf{HDFS} & 0.6 & 4 & 0.7 & 16 & 0.4 & 42 & 0.0 \\
\hline
\hline
\end{tabular} |
|
CR-21666 | \begin{tabular}{lcclcc}
\toprule
Normal service & Gas & Dollars & Collusion resolution & Gas & Dollars \\
\midrule
Contract deployment & $4697299$ & \$8.54 & $\mathsf{Accuse(\cdot)}$ & $223766$ & \$0.41 \\
$\mathsf{Deposit(\cdot)}$ & $105436$ & \$0.19 & $\mathsf{CheckCircuits(\cdot)}$ & $66991$+ & \$0.12+ \\
$\mathsf{PostRequests(\cdot)}$ & $405657$ & \$0.74 & $\mathsf{VerifyExchange(\cdot)}$ & $61822$ & \$0.11 \\
$\mathsf{SubmitResponse(\cdot)}$ & $97400$ & \$0.18 & $\mathsf{VerifyGeneralFunc(\cdot)}$ & $275279$ & \$0.50 \\
$\mathsf{ClaimServiceFee(\cdot)}$ & $33103$ & \$0.06 & $\mathsf{zkVerify(\cdot)}$ & $2286423$ & \$4.16 \\
\bottomrule
\end{tabular} |
|
AI-25799 | \begin{tabular}{|l|l|}
\hline
Dataset Name & SIENA12 \\
\hline
Number of images & 12 \\
\hline
Size & 1024x768 px \\
\hline
Categories & Outdoor, natural, synthetic \\
\hline
Number of observers & 23 \\
\hline
Age of the observers & From 23 to 52 \\
\hline
Task & Free-viewing \\
\hline
Duration & 5 seconds \\
\hline
Eye-tracker & ASL 504 (240 Hz) \\
\hline
Screen & LCD 1024 $\times$ 768 px (31 $\times$ 51 cm) \\
\hline
Eye-screen distance & 72 cm \\
\hline
Other information & Grayscale images \\
\hline
\end{tabular} |
|
CL-5687 | \begin{tabular}{l|l|r}
\hline
\textbf{Parameter Name} & \textbf{Symbol} & \textbf{Value} \\ \hline
Window size & $d^{win}$ & $3$ \\
Sentence. emb. dim. & $d^f$ & $690$ \\
Word. emb. dim. & $d^1$ & $50$ \\
Position. emb. dim. & $d^2$ & $5$ \\
Batch size & $\mathcal{B}$ & $160$ \\
Learning rate & $\mu$ & $0.03$ \\
Dropout pos. & $p$ & $0.5$ \\ \hline
\end{tabular} |
|
CV-16757 | \begin{tabular}{|l|l|}
\hline
Emotion & Frequency \\ \hline
Amusement & 5 \\ \hline
Sadness & 6 \\ \hline
Disgust & 88 \\ \hline
Surprise & 20 \\ \hline
Contempt & 3 \\ \hline
Fear & 2 \\ \hline
Repression & 40 \\ \hline
Tense & 28 \\ \hline
\end{tabular} |
|
CR-4952 | \begin{tabular}[c]{@{}l@{}}\cellcolor{gray!30}Collectcontactinfo,andthensendSMSwiththeappdownloadlinktoallcontacts.\end{tabular} |
|
CR-51370 | \begin{tabular}{|c|c|c|}
\hline
\textbf{Video Type} & \textbf{Database} & \textbf{Number of Videos} \\
\hline
Genuine & SMAD & 65 \\
\hline
Genuine (from train split) & SiW-M & 217 \\
\hline
Print Attack & SiW-M & 104 \\
\hline
Replay Attack & SiW-M & 99 \\
\hline
Mask Attack & SMAD & 65 \\
\hline
\end{tabular} |
|
SE-10495 | \begin{tabular}{cp{7.8cm}}
\toprule
\textbf{No.} & \textbf{TD General Question Description} \\
\midrule
GQ1 & Were you familiar with the presented description of technical debt before this questionnaire? \\
\midrule
GQ2 & How often do you introduce technical debt? \\
\midrule
GQ3 & For what reasons have you introduced technical debt? \\
\midrule
GQ4 & How often do you repay your own technical debt? \\
\midrule
GQ5 & For what reasons do you repay your own technical debt? \\
\bottomrule
\end{tabular} |
|
AI-14886 | \begin{tabular}{p{0.16\textwidth}|p{0.07\textwidth}p{0.07\textwidth}p{0.07\textwidth}}\hline
& relevance & interest & average \\ \hline
\textsc{SpaceFusion} & \textbf{2.72} & \textbf{2.53} & \textbf{2.63} \\
CVAE+BOW & 2.51 & 2.37 & 2.44 \\
Multi-Task & 2.34 & 2.14 & 2.24 \\
S2S+Sampling & 2.58 & 2.43 & 2.50 \\ \hline
human & 3.59 & 3.41 & 3.50 \\ \hline
\end{tabular} |
|
CV-10302 | \begin{tabular}{|l|l|l|}
\hline
Method & MUSK1 & MUSK2 \\
\hline\hline
mi-SVM & 0.874 & 0.836 \\
MI-SVM & 0.779 & 0.843 \\
MI-Kernel & 0.880 & 0.893 \\
EM-DD & 0.849$\pm$0.098 & 0.869$\pm$0.108 \\
mi-Graph & 0.889$\pm$0.073 & \textbf{0.903$\pm$0.086} \\
miVLAD & 0.871$\pm$0.098 & 0.872$\pm$0.095 \\
miFV & \textbf{0.909$\pm$0.089} & 0.884$\pm$0.094 \\
\hline\hline
mi-Net & 0.889$\pm$0.088 & 0.858$\pm$0.110 \\
MI-Net & 0.887$\pm$0.091 & 0.859$\pm$0.102 \\
MI-Net with DS & 0.894$\pm$0.093 & 0.874$\pm$0.097 \\
MI-Net with RC & 0.898$\pm$0.097 & 0.873$\pm$0.098 \\
\hline\hline
Attention & 0.892$\pm$0.040 & 0.858$\pm$0.048 \\
Gated-Attention & 0.900$\pm$0.050 & 0.863$\pm$0.042 \\
\hline\hline
HAMIL-A & 0.892$\pm$0.120 & 0.857$\pm$0.102 \\
HAMIL & 0.866$\pm$0.121 & 0.820$\pm$0.107 \\
\hline
\end{tabular} |
|
AI-30692 | \begin{tabular}{ll|ll}
\hline
Notation & Description & Notation & Description \\
\hline
$a_m$ & An action option &
$a^*$ & The system-expected action \\
$A$ & Set of available actions &
$t$ & Time step \\
$v_i$ & A user agent &
$p_{v_i,a_m}$ & $v_i$'s preference towards $a_m$ \\
$u_{v_i,a_m,t}$ & $v_i$' utility towards $a_m$ at $t$ &
$s_{v_i,t}$ & $v_i$'s behavior at $t$ \\
$S_{v_i}$ & Set of $v_i$'s historical behaviors &
$G$ & A social network \\
$V$ & Set of all user agents &
$e_{ij}$ & Directed edge from $v_i$ to $v_j$ \\
$E$ & Set of all edges connecting users &
$w_{ij}$ & Weight of $e_{ij}$ \\
$N_{v_i}^{in}$ & Set of agents who influence $v_i$ &
$N_{v_i}^{out}$ & Set of agents who are influenced by $v_i$ \\
$k_{v_i,a_m,t}$ & Overall influence from $N_{v_i}^{in}$ at $t$ &
$r_{v_i,t}$ & Incentive allocated to $v_i$ at $t$ \\
$B_t$ & Remaining budget at $t$ &
$\theta_{v_i}$ & $v_i$'s influential degree \\
$\rho_{v_i,t}$ & incentive sensitivity of $v_i$ &
$\omega_{v_i}$ & A ratio of $p_{v_i,a^*}$ to all preferences \\
$\mu_t$ & Global Activated Users Percentage &
$|\cdot|$ & The number of elements in a set \\
$P(\cdot)$ & Probability \\
\hline
\end{tabular} |
|
CV-30109 | \begin{tabular}{|p{2.2cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|p{0.8cm}|}
\hline
\multirow{2}{*}{Method} &
\multicolumn{2}{c|}{high-res} &
\multicolumn{2}{c|}{low-res} \\
& train & test & train & test \\
\hline
DeepC-MVS & \textbf{84.81} & \textbf{87.08} & 61.99 & \textbf{62.37} \\
$\text{DeepC-MVS}_{\text{f}}$ & 84.27 & 86.91 & \textbf{62.57} & 62.24 \\
ACMM & 78.86 & 80.78 & 55.12 & 55.01 \\
PCF-MVS & 79.42 & 79.29 & 57.32 & 57.06 \\
TAPA-MVS & 77.69 & 79.15 & 55.13 & 58.67 \\
LTVRE & 61.82 & 76.25 & 53.25 & 53.52 \\
COLMAP & 67.66 & 73.01 & 49.91 & 52.32 \\
P-MVSNet & n/a & n/a & n/a & 44.46 \\
\hline
\end{tabular} |
|
AI-40705 | \begin{tabular}{c|m{17em}}
\toprule
\textbf{Symbol} & \textbf{Meaning} \\
\midrule
$v \in \mathcal{V}$ & English token in an open vocabulary \\
$\textbf{e} \in \mathcal{E}$ & EEG feature vector in an EEG sequence \\
$c \in \mathcal{C}$ & Sentiment label in ternary sentiment classes \\
$\langle \mathcal{E}, \mathcal{S} \rangle$ & Word-level EEG feature sequence and text sentence pair \\
$\langle \mathcal{E}, c \rangle$ & Word-level EEG feature sequence and sentiment label pair \\
$\langle \hat{\textbf{e}}, c \rangle$ & Aggregated sentence-level EEG and sentiment label pair \\
$\langle \mathcal{S}, c \rangle$ & Text sentence and sentiment label pair \\
\bottomrule
\end{tabular} |
|
CV-23457 | \begin{tabular}{lc}
\toprule
Method & mIoU \\
\midrule
No boundary information & 60.4 \\
\midrule
Random flip & 62.4 \\
Exchange neighboring pair & 61.8~ \\
\midrule
No perturbation & \textbf{63.4} \\
\bottomrule
\end{tabular} |
|
SE-7007 | \begin{tabular}[c]{@{}l@{}}\textbf{CodeReview:}let'snotmodifythis.looksliketheclassesthatusethismethodimplementbufferedwriting
\end{tabular} |
|
AI-11242 | \begin{tabular}{c|cc|c|c}
\bottomrule[1pt]
Method & World & Object & Intensity & Car \\
\hline
\multirow{6}{*}{ST3D++ (w/ SN)} & $\times$ & $\times$ & - & 84.62 / 69.62 \\
& $\surd$ & $\times$ & Normal & 84.17 / 69.17 \\
& $\times$ & $\surd$ & Normal & 86.78 / 73.63 \\
& $\surd$ & $\surd$ & Normal & 86.65 / 73.98 \\
\cline{2-5}
& $\surd$ & $\surd$ & Strong & \textbf{86.71} / 73.59 \\
& $\surd$ & $\surd$ & Curriculum & {86.47} / \textbf{74.61} \\
\toprule[0.8pt]
\end{tabular} |
|
CR-17388 | \begin{tabular}{|c|c|p{7.5cm}|}
\hline
Technique & Application Domain & Description \\
\hline
Cryptobiometrics & General
& A combination of cryptographically secure matching and liveness
detection mechanisms to verify the uniqueness and existence of real human beings. \\
\hline
Resource Testing & General
& This verification method aims to determine if the identity has as many
resources as the single physical device it is associated with. \\
\hline
Recurring Costs & General
& This technique is a form of resource testing where resource
tests are performed at regular time intervals to impose a certain ``cost''
on the attacker that is charged for every identity that she controls or
introduces into the system . However, these researchers
have used a computational power in their resource test that may not be
sufficient to control the attack, since the attacker only incurs a one-time
cost that can be recovered via the execution of the attack itself
. \\
\hline
Economic Incentives & General
& This technique is based on a scheme where economic incentives are
used to reward the adversaries if the identities that are controlled
by it are revealed .
The main disadvantage is that it may encourage attackers economically. \\
\hline
\end{tabular} |
|
AI-21897 | \begin{tabular}
{p{130pt}p{130pt}}
\hline
\textbf{Parameter} &
\textbf{Value} \\
\hline
Number of generations &
51 \\
Crossover probability &
0.9 \\
Mutations &
2 / chromosome \\
Function set &
$F = \{+, -, *, /\}$ \\
Terminal set &
Problem inputs \\
Selection &
Binary Tournament \\
\hline
\end{tabular} |
|
CR-57204 | \begin{tabular}{|c|c|}
\hline
Layer name & Layer size \\ \hline
Convolution + Relu & $5\times 5\times 32$ \\ \hline
Max pool & $2\times 2$ \\ \hline
Convolution + Relu & $5\times 5\times 64$ \\ \hline
Max pool & $2\times 2$ \\ \hline
Fully connected + Relu & 1024 \\ \hline
Softmax & 62 \\ \hline
\end{tabular} |
|
SE-3244 | \begin{tabular}{lllllll}
\toprule
& Retry Count & Latency [s] & Execution Time [us] & Compilation Time [s] & Recompilation Count & Speedup \\
\midrule
count & 1,134.00 & 1,134.00 & 1,134.00 & 1,134.00 & 1,134.00 & 1,134.00 \\
mean & 0.35 & 22.97 & 5.09 & 20.38 & 0.12 & 6,969,904.73 \\
min & 0.00 & 4.08 & 0.50 & 3.90 & 0.00 & 15,069.51 \\
max & 9.00 & 202.53 & 877.04 & 647.88 & 9.00 & 75,961,275.56 \\
\bottomrule
\end{tabular} |
|
CR-10782 | \begin{tabular}{ccccccc}
\toprule
\multirow{2}{4em}{Trigger} & \multicolumn{3}{c}{Amazon} & \multicolumn{3}{c}{Twitter} \\
\cline{2-7}
& $E$ & $S$ & $C$ & $E$ & $S$ & $C$ \\
\hline
Anna Karenina & 2.58 & 0.092 & 4.2 & 1.71 & 0.160 & 3.7 \\
To Kill a Mockingbird & 2.18 & 0.137 & 3.3 & 1.81 & 0.240 & 2.3 \\
The Great Gatsby & 1.44 & 0.072 & 9.6 & 1.93 & 0.204 & 2.5 \\
Don Quixote & 1.00 & 0.041 & 24.4 & 1.00 & 0.088 & 11.4 \\
Jane Eyre & 1.85 & 0.058 & 9.3 & 1.05 & 0.078 & 12.2 \\
War and Peace & 2.43 & 0.099 & 4.2 & 1.94 & 0.179 & 2.9 \\
Pride and Prejudice & 2.71 & 0.148 & 2.5 & 2.88 & 0.374 & 0.9 \\
The Red and the Black & 1.87 & 0.121 & 4.4 & 1.39 & 0.250 & 2.9 \\
Les Misérables & 1.00 & 0.050 & 20.0 & 1.00 & 0.148 & 6.8 \\ \hline
average & 1.90 & 0.091 & 9.1 & 1.63 & 0.191 & 5.1 \\
\bottomrule
\end{tabular} |
|
AI-11993 | \begin{tabular}{@{}lrrrrr@{}}
\toprule
Model & \multicolumn{1}{l}{Batch Size} & \multicolumn{1}{l}{Weight decay} & \multicolumn{1}{l}{Learning rate} & \multicolumn{1}{l}{Eval F1} & \multicolumn{1}{l}{Test F1} \\
\midrule
RoBERTa-b & 32 & 0.1 & 0.00005 & 0.9848 & 0.9846 \\
RoBERTa-l & 16 & 0.01 & 0.00003 & \textbf{0.9856} & \textbf{0.9856} \\
BETO & 32 & 0.1 & 0.00005 & 0.9839 & 0.9836 \\
mBERT & 16 & 0.1 & 0.00005 & 0.9835 & 0.9839 \\
BERTIN & 16 & 0.1 & 0.00005 & 0.9847 & 0.9847 \\
ELECTRA & 16 & 0.01 & 0.00005 & 0.9822 & 0.9816 \\
\bottomrule
\end{tabular} |
|
AI-31488 | \begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{\#} & \textbf{White} & \textbf{Black} \\
\hline
1 & \texttt{g6} : \texttt{e2e4} & \texttt{e3} : \texttt{h7h5} \\
2 & \texttt{g7} : \texttt{d2d4} & \texttt{f2} : \texttt{f7f5} \\
3 & \texttt{g6} : \texttt{e4f5} & \texttt{e4} : \texttt{h5h4} \\
4 & \texttt{d7} : \texttt{f1e2} & \cellcolor{blue!16}\texttt{g4} : \texttt{b8c6} \\
5 & \texttt{g7} : \texttt{e2h5} & \texttt{g4} : \texttt{h8h5} \\
6 & \texttt{b7} : \texttt{d1h5} & \texttt{g5} : \texttt{g7g6} \\
7 & \texttt{e7} : \texttt{h5e8} & \texttt{g6} : \texttt{d7d6} \\
8 & \texttt{g6} : \texttt{g6e8} & \\
\hline
\end{tabular} |
|
CR-56658 | \begin{tabular}[c]{@{}l@{}}\{"\{"id":0,"method":"start\_cf","params":["\textcolor{red}{4,,}"1000,\\~2,2700,100,500
,1,255,10,5000,7,0,0,500,2,5000,1"]\}"\end{tabular} |
|
AI-5961 | \begin{tabular}{cccccc}
\toprule
Friedman Value & Value in $X^2$ & $p$-value & Iman-Davenport Value & Value in $F_F$ & $p$-value \\
\cmidrule(l{3pt}r{3pt}){1-3}
\cmidrule(l{3pt}r{3pt}){4-6}
\textbf{41.355} & 5.991 & 1.085E-9 & \textbf{25.807} & 3.042 & 1.097E-10 \\
\bottomrule
\end{tabular} |
|
CR-36052 | \begin{tabular}{p{2.13cm}p{0.75cm}p{4.3cm}}\hline
\toprule
\footnotesize{\textbf{Field}} & \footnotesize{\textbf{Offset}} & \footnotesize{\textbf{Description}} \\
\midrule
\footnotesize{Request} & \footnotesize{00} & \footnotesize{Power state transition control} \\
\footnotesize{Status} & \footnotesize{04} & \footnotesize{Status} \\
\footnotesize{Cancel} & \footnotesize{08} & \footnotesize{Abort command processing} \\
\footnotesize{Start} & \footnotesize{0c} & \footnotesize{A command is available for processing} \\
\footnotesize{Interrupt Control} & \footnotesize{10} & \footnotesize{Reserved} \\
\footnotesize{Command Size} & \footnotesize{18} & \footnotesize{Size of the Command (CMD) Buffer} \\
\footnotesize{Command Address} & \footnotesize{1c} & \footnotesize{Physical address of the CMD Buffer} \\
\footnotesize{Response Size} & \footnotesize{24} & \footnotesize{Size of the Response (RSP) Buffer} \\
\footnotesize{Response Address} & \footnotesize{28} & \footnotesize{Physical address of the RSP Buffer} \\
\bottomrule
\end{tabular} |
|
CV-20957 | \begin{tabular}{ccccc}
\toprule
& Airplane & Car & Chair & Mean \\
\hline
PrGAN & 0.151 & 0.228 & 0.114 & 0.164 \\
\hline
Proposed & \textbf{0.565} & \textbf{0.670} & \textbf{0.415} & \textbf{0.550} \\
\bottomrule
\end{tabular} |
|
CR-14086 | \begin{tabular}{l|cc|cc}
\toprule
{\bf Dataset} & \multicolumn{2}{c|}{\textbf{Saliency Map}} & \multicolumn{2}{c}{\textbf{Random Insertion}} \\
& \multicolumn{1}{c}{\textbf{ASR}} & \textbf{MTA} & \multicolumn{1}{c}{\textbf{ASR}} & \textbf{MTA} \\ \midrule
CIFAR-10 & 0.85 & 0.77 & 0.62 & 0.78 \\
\bottomrule
\end{tabular} |
|
CR-17146 | \begin{tabular}{cllrrrrrr}
\toprule
\rowcolor{gray!50}
\# & Configuration & Date & \# Sites & \# Pages & 1\textsuperscript{st}-party c. & 3\textsuperscript{rd}-party c. & CNAME Cl. \\
\midrule
1 & Plain browser & 07/20 & 11,471 & 272,659 & 408,509 & 155,193 & 14,493,533 \\
2 & No 3\textsuperscript{rd}-party cookies & 07/26 & 10,368 & 246,493 & 355,208 & ---\textsuperscript{$\ast$} & 11,017,643 \\
3 & \emph{uBlock Origin} active & 08/01 & 10,203 & 230,327 & 139,115 & 89,876 & 5,829,786 \\
4 & \#2 and \#3 combined & 08/06 & 10,153 & 225,315 & 142,608 & ---\textsuperscript{$\ast$} & 5,831,884 \\
\bottomrule
\end{tabular} |
|
CR-30480 | \begin{tabular}
{|>{\raggedright\arraybackslash}p{.58cm}
>{\centering\arraybackslash}p{.58cm}
>{\raggedleft\arraybackslash}p{.58cm}|
}
\hline
2019 & 1* & 49* \\
$\sim$19? & 1.7K & 14K \\
\hline
\end{tabular} |
|
CV-26405 | \begin{tabular}{|*{7}{c|}}
\hline
\multirow{2}*{Method} & \multicolumn{2}{c|}{AFLW} & \multicolumn{2}{c|}{COFW} & \multicolumn{2}{c|}{IBUG} \\
\cline{2-7} & Error & Failure & Error & Failure & Error & Failure \\
\hline
BM & 5.67 & 4.43 & 6.25 & 5.13 & 8.89 & 27.43 \\
WM & 5.50 & 3.84 & 6.11 & 4.54 & 8.72 & 26.80 \\
\textbf{AM} & \textbf{5.38} & \textbf{3.47} & \textbf{6.00} & \textbf{3.94} & \textbf{8.51} & \textbf{25.93} \\
\hline
\end{tabular} |
|
CR-40127 | \begin{tabular}{cl}
\hline
\textbf{Score} & \hspace{1.5cm} \textbf{Level} \\ \hline \hline
5 & Recovered all of the original speech \\ \hline
4 & Recovered most of the original speech \\ \hline
3 & Recovered half of the original speech \\ \hline
2 & Recovered little of the original speech \\ \hline
1 & Recovered none of the original speech \\ \hline
\end{tabular} |
|
CV-25421 | \begin{tabular}{lccccc}
\toprule
& linear & MLP with $d\,{=}\,1$ & MLP with $d\,{=}\,2$ & MLP with $d\,{=}\,3$ & MLP with $d\,{=}\,4$ \\
\midrule
Accuracy & 58.40{$\pm$0.59} & 59.11{$\pm$0.79} & 60.01{$\pm$0.74} & 59.23{$\pm$0.66} & 59.45{$\pm$0.68} \\
\bottomrule
\end{tabular} |
|
AI-14196 | \begin{tabular}{l|l}
\hline \hline
Layer type & Output Shape \\ [1ex]
\hline
Flatten & (None, Nx) \\
Dense x 2 & (None, 50K) \\
Dense x 3 & (None, 25K) \\
Dense & (None, 8) \\
\hline
\end{tabular} |
|
CV-15582 | \begin{tabular}{p{4.1em}|p{0.7em}p{0.8em}p{0.8em}}
\multicolumn{4}{c}{REFERENCE POINTS} \\
\hline
Marker & $C_1$ & $C_2$ & $C_3$ \\
\hline
Cutoff & 0.52 & 0.51 & 0.50 \\
\hline
Detections & & & \\
Per Image & 0.04 & 0.59 & 0.89 \\
(log 10) & & & \\
\hline
Missing & & & \\
Rate (Clouds) & 0.20 & 0.03 & 0.01 \\
\hline
Missing & & & \\
Rate (Storms) & 0.77 & 0.52 & 0.36 \\
\hline
\end{tabular} |
|
SE-8753 | \begin{tabular}[c]{@{}l@{}}Affectedbyvisceralprocessingbasedontheappearance\\or“lookandfeel”ofaproduct\\Potentialtohaveconflicts-havetoconsider\\moreonteamcompositionwhenformingprojectteam\end{tabular} |
|
SE-7102 | \begin{tabular}{|p{0.95\textwidth}|}
\hline Part 1 -- Who are you? \\
1) What is your role in your organization? \\
2) What is your main focus, especially in relation to autonomous driving? \\
3) How have you been involved in testing autonomous driving systems? \\
\hline Part 2 -- What do you think of using critical scenario identification for testing? \\
4) How do the critical scenario-based and other testing approaches complement each other? \\
5) What are the general advantages and limitations of critical scenario-based approaches? \\
6) How to improve the relevance of generated critical scenarios for testing? \\
7) Which approach is most feasible from a practical view? \\
\hline Part 3 -- What else to complement? \\
8) What are the open challenges for testing autonomous driving systems, particularly in relation to the use of critical scenario identification? \\
9) What are your general feedback and further interviewee candidates to recommend? \\
\hline
\end{tabular} |
|
AI-36210 | \begin{tabular}{|c|c|c|}
\hline
Annotator & Avg. Length & Total Videos Watched \\
\hline\hline
1 & 16.60 & 825 \\
\hline
2 & 16.65 & 875 \\
\hline
3 & 17.67 & 1700 \\
\hline
4 & 19.62 & 825 \\
\hline
5 & 21.22 & 875 \\
\hline
6 & 22.61 & 875 \\
\hline
7 & 22.71 & 875 \\
\hline
8 & 24.14 & 825 \\
\hline
9 & 25.81 & 825 \\
\hline
\end{tabular} |
|
AI-5640 | \begin{tabular}[c]{@{}l@{}}Aunifiedmarketplace\\thatusesAIservicesto\\makeitmoretransparent\\andthatautomatically\\identifyproblems.\end{tabular} |
|
CR-3454 | \begin{tabular}{|p{4cm}|p{4cm}|}
\hline
\textbf{Procedures} & \textbf{Diagnoses} \\
\hline
{\color{red} Attachment of pedicle or flap graft} & {\color{blue} Rheumatic heart failure} \\
{\color{red} Right heart cardiac catheterization} & {\color{blue} Ventricular fibrillation} \\
{\color{red} Procedure on two vessels} & {\color{blue} Benign essential hypertension} \\
{\color{red} Other endovascular procedures on other vessels} & {\color{blue} Paroxysmal ventricular tachycardia} {\color{blue} Nephritis and nephropathy} \\
{\color{red} Insertion of non-drug-eluting coronary artery stent(s)} & \\
\hline
\end{tabular} |
|
CV-25247 | \begin{tabular}{lc|cc|ccc}
\hline
Method & Branch No. & AP & $\text{AP}_{50}$ & $\text{AP}_{s}$ & $\text{AP}_{m}$ & $\text{AP}_{l}$ \\
\hline
Baseline & - & 37.9 & 58.8 & {20.0} & {43.0} & 52.8 \\
\hline
\multirow{4}{*}{TridentNet} & Branch-1 & 31.5 & 53.9 & 22.0 & 43.3 & 29.9 \\
& Branch-2 & 37.8 & 58.4 & 18.0 & 45.3 & 53.4 \\
& Branch-3 & 31.9 & 48.8 & 7.1 & 37.9 & \textbf{56.1} \\
& 3 Branches & \textbf{40.6} & \textbf{61.8} & \textbf{23.0} & \textbf{45.5} & 55.9 \\
\hline
\end{tabular} |
|
SE-9699 | \begin{tabular}{|c|c|c|c|}
\hline
\textbf{Repository} & \textbf{Data Type} & \textbf{Identification Field} & \textbf{Time (s)} \\ \hline
{Keras} & {Issue} & {title, body, comments.body} & {7.287} \\ \hline
{Keras} & {PR} & {title, body, comments.body} & {0.650} \\ \hline
{Keras} & {Commit} & {message} & {0.378} \\ \hline
{TensorFlow} & {Issue} & {title, body, comments.body} & {7.419} \\ \hline
{TensorFlow} & {PR} & {title, body, comments.body} & {0.632} \\ \hline
{TensorFlow} & {Commit} & {message} & {0.681} \\ \hline
\end{tabular} |
|
CV-20480 | \begin{tabular}{lllll}
\cmidrule(r){1-5}
\textit{n} & \textit{a} & \textit{e} & AUC & Accuracy \\
\midrule
7 & 0.007 & 0.125 & 1 & 0.997 \\
20 & 0.007 & 0.125 & 1 & 0.998 \\
40 & 0.5 & 8.0 & 1 & 0.998 \\
200 & 0.5 & 8.0 & 1 & 0.998 \\
\bottomrule
\end{tabular} |
|
CL-3170 | \begin{tabular}{ccccc}
\toprule
Methods & \multicolumn{1}{c}{Devel} & \multicolumn{1}{c}{WSJ} & \multicolumn{1}{c}{Brown} & Combined \\
\hline
{Baseline} & 81.5 & 83.2 & 71.6 & 81.6 \\
{TPF} & 82.5 & 84.1 & 72.9 & 82.6 \\
{TPF-Gold} & 88.4 & 89.6 & 79.8 & 88.3 \\
\hline
{Baseline w/ ELMo} & 85.5 & 86.3 & 74.7 & 84.8 \\
{TPF w/ ELMo} & 85.3 & 86.9 & 76.8 & 85.6 \\
{TPF-Gold w/ ELMo} & 89.8 & 91.1 & 82.2 & 89.9 \\
\bottomrule
\end{tabular} |
|
CR-50761 | \begin{tabular}{c|c|c|c|c|c|c|c}
\toprule
Model & [email protected] & aero & bike & bird & boat & bottle & bus \\ \hline
Clean & 79.81 & 84.82 & 87.65 & 76.86 & 75.45 & 61.15 & 81.03 \\ \hline
Backdoored & 79.78 & 84.12 & 89.03 & 75.30 & 73.91 & 61.10 & 82.95 \\ \hline \hline
Model & car & cat & chair & cow & table & dog & horse \\ \hline
Clean & 84.21 & 91.15 & 66.35 & 84.75 & 69.87 & 86.28 & 91.7 \\ \hline
Backdoored & 85.35 & 90.28 & 67.25 & 83.37 & 69.35 & 85.99 & 90.16 \\ \hline \hline
Model & mbike & person & plant & sheep & sofa & train & tv \\ \hline
Clean & 87.48 & 83.49 & 52.36 & 74.99 & 81.05 & 91.91 & 83.65 \\ \hline
Backdoored & 87.74 & 84.63 & 53.22 & 79.41 & 78.94 & 90.74 & 82.80 \\ \bottomrule
\end{tabular} |
|
PL-3752 | \begin{tabular}{|c|c|c||c|c|}\hline
\textbf{Benchmark} & \textbf{Execution Model} & \textbf{LOC} & \textbf{Manual Annotations} & \textbf{Invariants Inferred} \\\hline
Jacobi & Multiplicative SEU & 51 & 16 & 30 \\\hline
SS-CG & Additive SEU & 167 & 22 & 36 \\\hline
SS-SD & Unbounded SEU & 57 & 9 & 0 \\\hline
SC-CC & Switchable Rowhammer & 89 & 38 & 42 \\\hline
\end{tabular} |
|
AI-20043 | \begin{tabular}{lccc}
\hline
Stream & SH & NTU-60 & NTU-60 \\
& (CS) & (CS) & (CV) \\
\hline
RGB & 53.4 & 85.5 & 87.3 \\
OF & 51.8 & 85.7 & 92.8 \\
RGB + OF & 57.3 & 87.1 & 93.6 \\
\hline
MARS + RGB & 58.1 & 88.2 & 92.9 \\
VFN++ & 59.0 & 90.1 & 93.4 \\
VFN++ + OF & \textbf{66.4} & \textbf{94.6} & \textbf{97.2} \\
\hline
\end{tabular} |
|
CR-19772 | \begin{tabular}[l]{@{}l@{}}$\star$Three-layershardingblockchainforscalableandautomatictransaction\\$\bullet$Enhancedsystemscalabilityandtraceabilityofcriminaltransactions\\$\circ$Lackvulnerabilityanalysisandlarge-scalereal-worldsimulations\end{tabular} |
|
CL-3250 | \begin{tabular}{|p{4.32cm}|p{0.73cm}|p{0.62cm}|p{0.62cm}|}\hline
\textbf{Dataset Statistics} & \textbf{Train} & \textbf{Valid} & \textbf{Test} \\ \hline
Total No. of Dialogs(chat sessions) & 152391 & 16413 & 27797 \\\hline
Avg. No. of Utterances per dialog & 15.9 & 15.65 & 19.44 \\\hline
Total No. of Utterances having Question/Answer & 1.2M & .13M & .27M \\\hline
Length of user's question (in words) & 9.7 & 9.68 & 10.28 \\\hline
Length of system's response (in words) & 4.74 & 4.67 & 4.37 \\\hline
Avg. No. of Dialog states per dialog & 3.89 & 3.84 & 4.53 \\\hline
Vocab size (freq\textgreater=10) & 0.1M & - & - \\\hline
\end{tabular} |
|
CV-24816 | \begin{tabular}{c|c|c}
\hline
Baseline & Rain-I & Rain-II \\ \hline
Metric & PSNR/SSIM & PSNR/SSIM \\ \hline
& 29.22/0.867 & 29.86/0.901 \\
& 27.22/0.832 & 29.25/0.886 \\
& 25.93/0.865 & 25.03/0.871 \\
& 27.38/0.881 & 27.56/0.899 \\
& 17.96/0.675 & 17.99/0.605 \\
& 28.43/0.848 & 30.53/0.905 \\ \hline
Ours ($\alpha=1.0$) & 28.90/0.853 & 30.45/0.925 \\
Ours ($\alpha=0.6$) & 30.13/0.887 & 31.96/0.940 \\
Ours ($\alpha=0.3$) & 31.03/0.903 & 33.26/0.951 \\
Ours ($\alpha=0.0$) & \textbf{31.65}/\textbf{0.905} & \textbf{33.33}/\textbf{0.952} \\ \hline
\end{tabular} |
|
SE-4313 | \begin{tabular}{p{5cm}r}
\hline\hline
\textbf{Process description} & \textbf{\# of papers} \\ \hline
Papers obtained in primary search & 1175 \\
After Filtering Based on Title and Abstract Analysis & 326 \\
Papers obtained from Secondary Methods & 19 \\
Papers Rejected After Complete Reading & 179 \\
Papers Accepted & 164 \\
\hline
\end{tabular} |
|
CL-329 | \begin{tabular}{c|c|c|c}
\toprule
\textbf{PoS} & \textbf{Araneum} & \textbf{RNC} & \textbf{Number of pairs} \\
\midrule
Nouns & 41.67 & 43.49 & 653 \\
Adjectives & \textbf{47.92} & 42.31 & 97 \\
Verbs & 44.20 & \textbf{44.65} & 215 \\
\bottomrule
\end{tabular} |
|
CR-43625 | \begin{tabular}{p{2in}m{0.9in}<{\centering}p{2.05in}}
STS Monobit & No & \\
STS Runs & No & \\
STS Serial & No & \\
RGB Bit Distribution & No & \\
Genralised Minimum Distance & No & \\
RGB Permutations & No & \\
RGB Lagged Sum & No & \\
The Kolmogorov--Smirnov & No & \\
DAB byte Distribution & No & \\
DCT & No & \\
DAB Fill Tree & No & \\
DAB Fill Tree 2 & No & \\
DAB Monobit 2 & No & \\
PractRand & No & \\ \bottomrule
\end{tabular} |
|
AI-22243 | \begin{tabular}{|c|l|l|l|l|l|l|}
\hline
\multirow{2}{*}{Classifier} & \multicolumn{2}{|c|}{DTC} & \multicolumn{2}{c|}{LR} & \multicolumn{2}{c|}{MLP} \\
\cline{2-7}
& \multicolumn{1}{c|}{Accuracy} & \multicolumn{1}{c|}{F1} & \multicolumn{1}{c|}{Accuracy} & \multicolumn{1}{c|}{F1} & \multicolumn{1}{c|}{Accuracy} & \multicolumn{1}{c|}{F1} \\ \hline
Original Data & $ 0.811\pm0.001$ & $0.606\pm0.002$ & $0.798\pm0.000$ & $0.378\pm0.000$ & $0.780\pm0.051$ & $0.488\pm0.075$ \\ \hline
TabFairGan & $\textbf{0.783}\pm\textbf{0.001}$ & $\textbf{0.544}\pm\textbf{0.002}$ & $\textbf{0.794}\pm\textbf{0.020}$ & $\textbf{0.239}\pm\textbf{0.012}$ & $0.778\pm0.045$ & $\textbf{0.405}\pm\textbf{0.174}$ \\ \hline
TGAN & $0.661\pm0.013$ & $0.503\pm0.012$ & $0.765\pm0.010$ & $0.170\pm0.008$ & $0.623\pm0.197$ & $0.376\pm0.159$ \\ \hline
CTGAN & $0.777\pm0.003$ & $0.482\pm0.004$ & $\textbf{0.794}\pm\textbf{0.023}$ & $0.232\pm0.012$ & $\textbf{0.784}\pm\textbf{0.007}$ & $0.305\pm0.104$ \\ \hline
\end{tabular} |
|
CR-9831 | \begin{tabular}{lcccccc}
\hline
data & \multicolumn{3}{c}{Few-shot} & \multicolumn{3}{c}{Zero-shot} \\
substitute & \multicolumn{1}{c}{average} & \multicolumn{1}{c}{projection} & \multicolumn{1}{c}{truncation} & \multicolumn{1}{c}{average} & \multicolumn{1}{c}{projection} & \multicolumn{1}{c}{truncation} \\
\hline
\rowcolor{lightgray}
pre $AUC_{l,u}$ & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 & 0.44 \\
$AUC_{l,u}$ & 0.99 & 0.97 & 0.97 & 0.79 & 0.80 & 0.80 \\
\rowcolor{lightgray}
pre $FID_{l}$ & 5.52 & 5.52 & 5.52 & 5.52 & 5.52 & 5.52 \\
$FID_{l}$ & 8.98 & 9.36 & 8.75 & 19.97 & 14.87 & 11.49 \\
\rowcolor{lightgray}
pre $ACC$ & 0.77 & 0.77 & 0.77 & 0.77 & 0.77 & 0.77 \\
$ACC$ & 0.77 & 0.78 & 0.77 & 0.69 & 0.73 & 0.77 \\
$T$ & 1530.59 & 1544.15 & 1528.43 & 11553.41 & 6516.46 & 6616.05 \\
\hline
\end{tabular} |
|
CR-51521 | \begin{tabular}[c]{@{}l@{}}ItmaybeacceptabletodisablethemaskingwhenusingtheAESciphercoreforrandomnumbergeneratione.g.insideCSRNG.\end{tabular} |
|
AI-33077 | \begin{tabular}{|c|l||c|l|}
\hline
\multicolumn{1}{|c|}{\textbf{State}} & \multicolumn{1}{c||}{\textbf{Description}} &
\multicolumn{1}{c|}{\textbf{State}} & \multicolumn{1}{c|}{\textbf{Description}}
\\ \hline
S1 & Installed malicious s/w & S7 & Message interception \\ \hline
S2 & Flash App Overlay & S8 & Launches new task \\ \hline
S3 & URL scheme registering & S9 & Mimics trusted UI \\ \hline
S4 & Implicit intent interception & S10 & User tricked \\ \hline
S5 & Query legit task list & S11 & Sensitive data obtained \\ \hline
S6 & Toast Window overlay & & \\ \hline
\end{tabular} |
|
CR-11509 | \begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Attack & acc & acc adv & FNR & FNR adv & change & evasion \\ [0.5ex]
\hline
\hline
$dFGSM^k$ & 0.93 & 0.62 & 0.12 & 0.56 & 70.64 & 1.0 \\
\hline
$rFGSM^k$ & 0.93 & 0.62 & 0.12 & 0.56 & 70.64 & 1.0 \\
\hline
$BGA^k$ & 0.93 & 0.91 & 0.12 & 0.12 & 24.50 & 0.12 \\
\hline
$BCA^k$ & 0.93 & 0.90 & 0.12 & 0.12 & 2.14 & 0.14 \\
\hline
\end{tabular} |
|
SE-4336 | \begin{tabular}{lccc|ccc|ccc}
\toprule
\multirow{2}*{\textbf{Ablation}} & \multicolumn{3}{c}{\textbf{Argument}} & \multicolumn{3}{c}{\textbf{Return Value}} & \multicolumn{3}{c}{\textbf{User Defined}} \\
\cmidrule{2-10}
& Top-1 & Top-3 & Top-5 & Top-1 & Top-3 & Top-5 & Top-1 & Top-3 & Top-5 \\
\midrule
\textbf{Only Static Inference (No DL models)} & 0.13 & - & - & 0.52 & - & - & 0.08 & - & - \\
\midrule
\textbf{No Type Rejection} & 0.63 & 0.72 & 0.74 & 0.60 & 0.65 & 0.66 & 0.48 & 0.56 & 0.60 \\
\midrule
\midrule
\textbf{No Type Correction} & 0.60 & 0.68 & 0.70 & 0.57 & 0.61 & 0.62 & 0.39 & 0.46 & 0.47 \\
\midrule
\textbf{Type Correction - Only Variable Names} & 0.57 & 0.64 & 0.64 & 0.58 & 0.63 & 0.65 & 0.35 & 0.39 & 0.40 \\
\midrule
\textbf{Type Correction - Only DL models} & 0.62 & 0.69 & 0.72 & 0.58 & 0.63 & 0.64 & 0.43 & 0.50 & 0.53 \\
\midrule
\midrule
\textbf{Overall Framework} & 0.63 & 0.71 & 0.74 & 0.60 & 0.65 & 0.66 & 0.47 & 0.55 & 0.59 \\
\bottomrule
\end{tabular} |
|
AI-40087 | \begin{tabular}{|c|l|c|c|c|}
\hline
\multirow{2}{*}{No.} & \multirow{2}{*}{System} & \multicolumn{3}{|c|}{Aishell-2-1000hrs} \\
& & ios & android & mic \\
\hline\hline
1 & Transd. & 5.9 & 6.7 & 6.5 \\
2 & Transd. + LF-MMI Training & 5.8 & 7.0 & 6.5 \\
3 & \ \ + MMI Alignment Score Decoding & 5.7 & 7.0 & 6.5 \\
4 & \ \ + MMI Rescoring & 5.7 & 6.9 & 6.5 \\
\hline
5 & Transd. + Char. CTC + LF-MMI Training & \textbf{5.4} & 6.6 & 6.5 \\
6 & \ \ + MMI Alignment Score Decoding & \textbf{5.4} & \textbf{6.5} & \textbf{6.3} \\
7 & \ \ + MMI Rescoring & \textbf{5.4} & 6.6 & 6.4 \\
\hline
\end{tabular} |
|
AI-26307 | \begin{tabular}{c|c|c}
Hyperparameter & Value & Search range \\
\hline
Task-agnostic replay capacity & 500K & (200K,500K,1M) \\
C[warmup] & $\{1\}$ & N/A \\
C & \{0.8, 0.6, 0.4, 0.2, 0.1, 0.01\} & N/A \\
State encoder units & 128 & (64,128,256) \\
State encoder latent & 32 & (8,12,16,32) \\
Effect encoder units & 256 & (64,128,256) \\
Effect encoder latent & 12 & (8,12,16,32) \\
$Q_e$ units & 512 & (64,128,256,512,1024) \\
$Q_e$ learning rate & 0.0001 & (1e-3,5e-4,1e-4,5e-5,1e-5) \\
$Q_e$ target update & 15K & (1K,5K,10K,15K,20K) \\
$E$ encoder units & (256-128-64) & (512,256,128) \\
$E$ decoder units & (64-128-256) & (512,256,128) \\
$E$ latent & 8 & (4,8,16,32) \\
$E$ learning rate & 0.001 & (5e-3,1e-3,5e-4,1e-4,5e-5) \\
$\hat{e_t}$ learning rate & 0.0005 & (1e-3,5e-4,1e-4) \\
$\hat{e_t}$ units & 32 & (32,64,128,256) \\
\end{tabular} |
|
CV-16978 | \begin{tabular}{llll}
\hline
\multicolumn{1}{c}{Methods} & \multicolumn{3}{c}{Accuracy} \\ \cline{2-4}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{5 cm} & \multicolumn{1}{c}{10 cm} & \multicolumn{1}{c}{20 cm} \\ \hline
DP ResNet-101 FCN & \multicolumn{1}{l}{43.05} & \multicolumn{1}{l}{65.23} & 74.17 \\
DP ResNet-101 FCN* & \multicolumn{1}{l}{51.32} & \multicolumn{1}{l}{75.50} & 85.76 \\
SlimDP HG - 1 stack & \multicolumn{1}{l}{49.89} & \multicolumn{1}{l}{74.04} & 82.98 \\
\hline
Our ResNet-101 FCN & \multicolumn{1}{l}{49.09} & \multicolumn{1}{l}{73.12} & 84.51 \\
Our ResNet-101 FCN* & \multicolumn{1}{l}{53.01} & \multicolumn{1}{l}{76.77} & 87.70 \\
Our HG - 1 stack & \multicolumn{1}{l}{50.50} & \multicolumn{1}{l}{75.57} & 87.18 \\ \hline
\end{tabular} |
|
AI-33081 | \begin{tabular}{|l|p{4.5cm}|}
\hline
\multicolumn{1}{|c|}{\textbf{Hidden states}} & \multicolumn{1}{c|}{\textbf{Obseravations}} \\ \hline
S1:Installed malicious software & O1:User logged in \\ \hline
S6:Toast window overlay & O5:opens malicious app \\ \hline
S10:User tricked & O6:Toast window pops up; taps on button \\ \hline
S11:Sensitive data obtained & O4:Unauthorized account transaction \\ \hline
\end{tabular} |
|
CR-18411 | \begin{tabular}{|l|l|}
\hline
\rowcolor[HTML]{ EFEFEF}
\textbf{Component} & \textbf{Details}
\\ \hline
Browser extension & FingerprintAlert 1.0
\\ \hline
Programming language & Phython 3.6.3
\\ \hline
Automation tool & Selenium 3.8.1
\\ \hline
\end{tabular} |
|
CV-10039 | \begin{tabular}{lllllll}
\hline\noalign{\smallskip}
Method & \multicolumn{2}{c}{sMOTSA} & \multicolumn{2}{c}{MOTSA} & \multicolumn{2}{c}{MOTSP} \\
& Car & Ped & Car & Ped & Car & Ped \\
\noalign{\smallskip}
\hline
\noalign{\smallskip}
\multicolumn{7}{l}{\textit{ Fully supervised}} \\
MOTSNet & 69.0 & 45.4 & 78.7 & 61.8 & 88.0 & 76.5 \\
Ours & 69.1 & 35.1 & 80.1 & 52.0 & 87.0 & 75.3 \\
\hline
\multicolumn{7}{l}{\textit{ Weakly supervised}} \\
Ours & 54.6 & 20.3 & 72.5 & 39.7 & 76.6 & 65.7 \\
\hline
Relative performance drop & 21.0 & 42.2 & 9.5 & 23.7 & 12.0 & 12.7 \\
\hline
\end{tabular} |
|
CV-27748 | \begin{tabular}[c]{@{}l@{}}
$fc$: [32, 512] \\
conv, 1 x 1, [32, 512] \\
conv, 1 x 1, 64 \\
conv, 3 x 3, 64 \\
conv, 1 x 1, 256 \\
\end{tabular} |
|
CV-21149 | \begin{tabular}{ccccc}
\hline
Selected Best Classes & Base. & TSSI & GLAN & GLAN + SSAN \\
\hline
standing up & 85.4 & 94.1 & {\bf 97.1} & 96.3 \\
sitting down & 91.6 & 91.6 & 93.8 & {\bf 93.8} \\
walking apart & 90.6 & 91.3 & 93.1 & {\bf 96.0} \\
kicking something & 80.8 & 91.7 & 92.4 & {\bf 92.8} \\
\hline
Selected Worst Classes & Base. & TSSI & GLAN & GLAN + SSAN \\
\hline
writing & {\bf 52.2} & 26.5 & 39.7 & 45.6 \\
reading & 25.6 & 26.0 & 39.9 & {\bf 42.8} \\
clapping & 17.2 & 36.6 & 39.7 & {\bf 63.0} \\
playing with phone & 31.6 & 43.6 & 56.0 & {\bf 66.2} \\
\hline
Overall & 68.0 & 73.1 & 80.1 & {\bf 82.4} \\
\hline
\end{tabular} |
|
CV-23715 | \begin{tabular}{|c|cc|cc|cc|cc|}
\hline
\multirow{3}{*}{Train Data} & \multicolumn{4} {c|} {Score Average} & \multicolumn{4} {c|} {Feature + LSTM} \\
\cline{2-9}
& \multicolumn{2} {c|} {Genres} & \multicolumn{2} {c|} {Keywords} & \multicolumn{2} {c|} {Genres} & \multicolumn{2} {c|} {Keywords} \\
\cline{2-9}
& recall@3 & MAP & recall@3 & MAP & recall@3 & MAP & recall@3 & MAP \\
\hline
Image-base & - & - & - & - & 0.477 & 0.472 & 0.199 & 0.127 \\
Movie 361 & 0.433 & 0.342 & 0.192 & 0.103 & 0.432 & 0.440 & 0.181 & 0.107 \\
Trailer 361 & 0.421 & 0.430 & 0.154 & 0.126 & 0.435 & 0.446 & 0.196 & 0.123 \\
Trailer 2K & 0.559 & 0.538 & 0.222 & 0.128 & 0.491 & 0.513 & 0.217 & 0.128 \\
Trailer 10K & \textbf{0.586} & 0.587 & 0.245 & 0.131 & \textbf{0.531} & 0.523 & 0.228 & 0.113 \\
Trailer 33K & 0.582 & \textbf{0.596} & \textbf{0.248} & \textbf{0.139} & 0.528 & \textbf{0.538} & \textbf{0.236} & \textbf{0.139} \\ \hline
\end{tabular} |
|
CR-41237 | \begin{tabular}{c|c|c|c|c|c}
\toprule
\textbf{$script / platf.$} & \textbf{(P) Keygen} & \textbf{(P) Request} & \textbf{(P) Pub-Key} & \textbf{(P) Aggr. Cred.} & \textbf{(P) Sign Session} \\
\midrule
X86-X64 & 0.0137 & 0.0391 & 0.0196 & 0.0219 & 0.0521 \\
Raspberry Pi 4 & 0.0373 & 0.0883 & 0.0475 & 0.0579 & 0.1456 \\
Raspberry Pi 0 & 0.2492 & 0.5165 & 0.3017 & 0.3469 & 0.6603 \\
\bottomrule
\end{tabular} |
|
PL-6998 | \begin{tabular}{lllllll}
& $l_0$ & $l_1$ & $l_2$ & $l_3$ & $l_4$ & $l_5$ \\\toprule
tree 1 & b & b & 2 & a & 3.1 & a \\
tree 2 & c & c & 2 & d & 2.7 & d \\\hline
& $x_0$ & $x_0$ & 2 & $x_1$ & $c_0$ & $x_1$
\end{tabular} |
|
AI-40966 | \begin{tabular}{|c|c|c|c|c|c|}
\hline
& IRT & PFA & BKT & DKT & DKT-DSC\tabularnewline
\hline
Use of student's ability & Yes & No & No & No & Yes\tabularnewline
Use of item difficulty & Yes & No & No & No & No \tabularnewline
Use of single skill & Yes & No & Yes & Yes & Yes \tabularnewline
Use of multiple skill & No & Yes & No & No & No \tabularnewline
Learn on ordered sequence & No & No & Yes & Yes & Yes \tabularnewline
\hline
\end{tabular} |
|
CR-51043 | \begin{tabular}{clccccc}
\toprule
\multirow{2}[4]{*}{\textbf{Year}} & \multirow{2}[4]{*}{\textbf{Method}} & \multicolumn{4}{c}{\textbf{Existing Attacks}} & \multicolumn{1}{c}{\multirow{2}[4]{*}{\textbf{Ours}}} \\
\cmidrule{3-6} & & \multicolumn{1}{l}{Pruning} & \multicolumn{1}{l}{Fine-tuning} & \multicolumn{1}{l}{Overwriting} & \multicolumn{1}{l}{Abiguity} & \\
\midrule
2017 & Uchida et al. & \ding{55} & \ding{55} & \ding{51} & \ding{51} & \ding{51} \\
\midrule
2019 & DeepSigns & \ding{55} & \ding{55} & \ding{55} & \ding{51} & \ding{51} \\
\midrule
2020 & Passport-Aware & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\midrule
\multirow{5}[4]{*}{2021} & DeepIPR & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\cmidrule{2-7}
& RIGA & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\cmidrule{2-7}
& Greedy Residuals & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\cmidrule{2-7}
& IPR-GAN & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\cmidrule{2-7}
& Lottery Verification & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\midrule
2022 & IPR-IC & \ding{55} & \ding{55} & \ding{55} & \ding{55} & \ding{51} \\
\bottomrule
\end{tabular} |
|
CV-25870 | \begin{tabular}{c|c|c|c|c|}
\cline{2-5}
& Area & Closeness & Variance & BoxNet \\
\hline
\multicolumn{1}{ |c| }{Car} & 0.6578 & 0.6825 & 0.6346 & \textbf{0.8787} \\
\hline
\multicolumn{1}{ |c| }{Cyclist} & 0.622 & 0.6252 & 0.622 & \textbf{0.7953} \\
\hline
\multicolumn{1}{ |c| }{Pedestrian} & 0.5209 & 0.5368 & 0.549 & \textbf{0.6704} \\
\hline
\end{tabular} |
|
CR-28846 | \begin{tabular}{p{0.8\textwidth}}
\begin{equation}
p(A_{n}) \approx MLM(n, T) = \frac{MLM(n, T-1) * |E_{T-1}^{n}| + E_{T}^{n}}{|E_{T}^{n}|}, MLM(n, 1) = E_{1}^{n}
\end{equation}
\end{tabular} |
|
CV-28493 | \begin{tabular}[c]{@{}l@{}}\textbf{45}(airplane,airport,baseballdiamond,basketball\\court,beach,bridge,chaparral,church,circularfarmland,cloud,commercial\\area,denseresidential,desert,forest,freeway,golfcourse,groundtrack\\field,harbor,industrialarea,intersection,island,lake,meadow,medium\\residential,mobilehomepark,mountain,overpass,palace,parkinglot,\\railway,railwaystation,rectangularfarmland,river,roundabout,runway,\\seaice,ship,snowberg,sparseresidential,stadium,storagetank,tennis\\court,terrace,thermalpowerstation,andwetland.)\end{tabular} |
|
CL-729 | \begin{tabular}[c]{@{}l@{}}\{...\}EdKeegandidthemoundchoresfortheclubdown\\fromWestPalmBeachto\underline{play}thegame\\before767payingcustomers\{...\}\end{tabular} |
|
AI-4163 | \begin{tabular}{|c|c|c|c|}
\multicolumn{4}{c}{\# Iterations} \\
\hline
dataset & MHMM & oMHMM & iMHMM \\
\hline
1 vs 8 & 6 & \textbf{2} & 3 \\
\hline
2 vs 3 & 4 & 4 & \textbf{3} \\
\hline
3 vs 4 & 4 & \textbf{3} & 5 \\
\hline
3 vs 8 & 5 & \textbf{2} & 3 \\
\hline
4 vs 14 & \textbf{3} & \textbf{3} & 4 \\
\hline
\end{tabular} |
|
CV-15822 | \begin{tabular}{@{}ccccccc@{}}
\hline
FCL & S & V & Full & Rare & NonRare & Unseen\cr
\hline\hline
\hline
- & \checkmark & - & 18.22 & 15.69 & 20.74 & 12.98 \\
\checkmark & \checkmark & - & 19.39 & 17.99 & 21.21 & 14.83 \\
\checkmark & - & \checkmark & 19.61 & 18.69 & 21.13 & 15.86 \\
\checkmark & \checkmark & \checkmark & 19.62 & 18.38 & 21.61 & 14.73 \\
\hline
\end{tabular} |
|
SE-20379 | \begin{tabular}{lrr}
{\bf {\tt javadoc} type} & {\bf no. sentences} & {\bf avgppx} \\
{\bf Non-javadoc} & 31688 & 15.58 \\ \hline
@linkplain & 26 & 15.91 \\
@return & 11100 & 13.28 \\
@code & 1667 & 10.01 \\
@link & 2623 & 9.56 \\
@param & 18052 & 6.49 \\
@deprecated & 387 & 6.41 \\
@see & 1460 & 6.13 \\
@inherit & 651 & 3.53 \\
@throws & 5342 & 2.50 \\
@since & 359 & 1.44 \\
\end{tabular} |
|
CR-36759 | \begin{tabular}{|l|p{5.5cm}|}
\hline
\textbf{Symbols} & \textbf{Description} \\
\hline
$ Hash $ & The hash operation \\
$ Xor $ & The xor operation \\
$ Add $ & The addition operation \\
$ Con $ & The concatenation operation \\
$ Enc_{sgx} $ & The encryption operation at the cloud \\
$ Dec_{sgx} $ & The decryption operation at the cloud \\
$ Sig_{sgx} $ & The signature operation \\
$ Ver_{sgx} $ & The verification operation \\
$ LA_{sgx} $ & The Local Attestation operation \\
$ RA_{sgx} $ & The Remote Attestation operation \\
$ Enc $ & The encryption operation at the user \\
$ Dec $ & The decryption operation at the user \\
\hline
\end{tabular} |
|
SE-19177 | \begin{tabular}{@{}ll@{}}
\toprule
Evidence category & Abbreviation \\ \midrule
Positive Evidence in OSS Projects & P-E-OSS \\ \midrule
Positive Evidence in Different Context & P-E-OTH \\ \midrule
Inconclusive Evidence & INC-E \\ \midrule
No Evidence & NO-E \\ \bottomrule
\end{tabular} |
|
CR-31511 | \begin{tabular}{p{2.5cm}<{\centering}p{4.5cm}<{\centering}}
\toprule
\textbf{Code} & \textbf{Function} \\
\midrule
0x00 & System Functions \\
0x04 & Read \\
0x05 & Write \\
0x1a & Request Download \\
0x1b & Download Block \\
0x1c & Download End \\
0x1d & Download Start \\
0x1e & Upload \\
0x1f & Upload End \\
0x28 & PLC Control \\
0x29 & PLC Stop \\
0xf0 & Communication Setup \\
\bottomrule
\end{tabular} |
|
CR-1254 | \begin{tabular}{lrccccc}
\toprule
& & \multicolumn{5}{c}{\textbf{Parameter Configuration}} \\
\cmidrule{3-7} \textbf{Backbone} & & \textbf{None} & & \textbf{FiLM} & & \textbf{All} \\
\cmidrule{1-1}\cmidrule{3-3}\cmidrule{5-5}\cmidrule{7-7} \textbf{R-50} & & 0.6 & & 0.9 & & 2.7 \\
\textbf{VIT-B} & & 1.3 & & 2.4 & & 6.5 \\
\bottomrule
\end{tabular} |
|
CV-1070 | \begin{tabular}{c*{1}{|c}}
\textbf{Size} & \textbf{Frequency} \\ \hline
$1536\times2048$ & $4$ \\
$2160\times3840$ & $1$ \\
$2448\times3264$ & $21$ \\
$2880\times3840$ & $267$ \\
$3024\times4032$ & $15$ \\
\end{tabular} |
|
AI-25495 | \begin{tabular}{c|c|c|c|c|c}
\hline
Model & PSNR & SSIM & LPIPS & MPS & Runtime(s) \\
\hline
OIDDR-Net (ours) & \textbf{17.62} & \textbf{0.6645} & \textbf{0.2733} & \textbf{0.6956} & 0.53 \\
\hline
WDRN & 17.45 & 0.6642 & 0.2771 & 0.6935 & 0.05 \\
\hline
DRN & 17.59 & 0.596 & 0.440 & 0.578 & 0.5 \\
\hline
DMSHN & 17.20 & 0.5696 & 0.3712 & 0.5992 & 0.0058 \\
\hline
SRN & 16.94 & 0.5660 & 0.4319 & 0.5670 & 0.87 \\
\hline
Dense-GridNet & 16.67 & 0.2811 & 0.3691 & 0.9120 & 0.9326 \\
\hline
Dong \emph{et al.} & 17.14 & 0.6132 & 0.2764 & 0.6684 & --- \\
\hline
\end{tabular} |
|
CV-14511 | \begin{tabular}{l|cccc|ccccc}
\toprule
& $L_c$ & $L_s$ & $L_c+L_r$ & $L_c+L_s+L_r$ & SC & NCA & 4Conv & 8Conv & Full \\
\midrule
Accuracy & 62.0 & - & 72.2 & 73.6 & 78.7 & 71.7 & 74.6 & 71.4 & 79.0 \\
f-mAP & - & 51.1 & - & 77.8 & 77.4 & 72.9 & 72.1 & 70.4 & 78.6 \\
v-mAP & - & 48.1 & - & 79.9 & 80.7 & 74.9 & 73.5 & 71.3 & 80.3 \\
\bottomrule
\end{tabular} |
|
CR-6958 | \begin{tabular}{l@{\hspace{0.6em}}|c@{\hspace{0.6em}}|c@{\hspace{0.6em}}|c@{\hspace{0.6em}}|c@{\hspace{0.6em}}}
\hline
\textbf{Block} & \textbf{Kernel size} & \textbf{Stride} & \textbf{Padding} & \textbf{Out channels} \\
\hline
conv1 & 11 & 5 & 0 & 16 \\
conv2 & 11 & 5 & 1 & 24 \\
conv3 & 12 & 7 & 0 & 48 \\
conv4 & 11 & 5 & 0 & 72 \\
conv5 & 11 & 7 & 2 & 96 \\
conv6 & 11 & 8 & 0 & 192 \\
conv7 & 11 & 5 & 0 & 240 \\
conv8 & 3 & 1 & 0 & 384 \\
\hline
FC1 & \multicolumn{4}{c}{384 x 128} \\
FC2 & \multicolumn{4}{c}{128 x 2 } \\
\hline
\end{tabular} |
|
CR-47836 | \begin{tabular}[c]{@{}l@{}}Finetuneswithannotateddataandenablesthemodel\\toconsultexternalknowledgesources\end{tabular} |
|
CV-9781 | \begin{tabular}{l|cc}
\toprule
Model & Original & Elastic \\
\midrule
ResNeXt50\textsuperscript{*} & 75.29 & \textbf{77.70} \\
ResNeXt101\textsuperscript{*} & 77.47 & \textbf{78.51} \\
DLA-X60\textsuperscript{*} & 69.96 & \textbf{73.59} \\
\bottomrule
\end{tabular} |
|
CR-38132 | \begin{tabular}{|l|l|l|}
\hline
\textbf{Exact query value} & \multicolumn{2}{|c|}{\textbf{Returned tuples/Adversarial view}} \\ \hline
~ & \textbf{Sensitive bin and data} & \textbf{Non-sensitive bin and data} \\ \hline\hline
$s_2$ or $\mathit{ns}_2$ & $\mathit{SB}_2$\textbf{:}$\mathit{E(s_2)}$,$\mathit{E(s_7)}$ & $\mathit{NSB}_0$\textbf{:}$\mathit{ns}_1$,$\mathit{ns}_2$,$\mathit{ns}_3$,$\mathit{ns}_5$,$\mathit{ns}_{11}$ \\\hline
$s_6$ or $\mathit{ns}_6$ & $\mathit{SB}_1$\textbf{:}$\mathit{E(s_1)}$,$\mathit{E(s_6)}$ & $\mathit{NSB}_1$\textbf{:}$\mathit{ns}_6$,$\mathit{ns}_{12}$,$\mathit{ns}_{13}$,$\mathit{ns}_{14}$,$\mathit{ns}_{15}$ \\\hline
$s_7$ & $\mathit{SB}_2$\textbf{:}$E(s_2)$,$E(s_7)$ &
$\mathit{NSB}_0$\textbf{:}$\mathit{ns}_1$,$\mathit{ns}_2$,$\mathit{ns}_3$,$\mathit{ns}_5$,$\mathit{ns}_{11}$ \\\hline
$\mathit{ns}_{12}$ & $\mathit{SB}_1$\textbf{:}$E(s_1)$,$E(s_6)$ & $\mathit{NSB}_1$\textbf{:}$\mathit{ns}_6$,$\mathit{ns}_{12}$,$\mathit{ns}_{13}$,$\mathit{ns}_{14}$,$\mathit{ns}_{15}$ \\\hline
$\mathit{ns}_{13}$ & $\mathit{SB}_1$\textbf{:}$E(s_1)$,$E(s_6)$ & $\mathit{NSB}_1$\textbf{:}$\mathit{ns}_6$,$\mathit{ns}_{12}$,$\mathit{ns}_{13}$,$\mathit{ns}_{14}$,$\mathit{ns}_{15}$ \\\hline
$\mathit{ns}_{14}$ & $\mathit{SB}_1$\textbf{:}$E(s_1)$,$E(s_6)$ & $\mathit{NSB}_1$\textbf{:}$\mathit{ns}_6$,$\mathit{ns}_{12}$,$\mathit{ns}_{13}$,$\mathit{ns}_{14}$,$\mathit{ns}_{15}$ \\\hline
$\mathit{ns}_{15}$ & $\mathit{SB}_1$\textbf{:}$E(s_1)$,$E(s_6)$ & $\mathit{NSB}_1$\textbf{:}$\mathit{ns}_6$,$\mathit{ns}_{12}$,$\mathit{ns}_{13}$,$\mathit{ns}_{14}$,$\mathit{ns}_{15}$ \\\hline
\end{tabular} |
|
CR-5604 | \begin{tabular}[c]{@{}l@{}}analyzethesentenceandexplaincontext\\whichthecouldbeapplicable\textbackslash{}"Thesky\\isthelimit\end{tabular} |
Subsets and Splits