
Datasets:
image
imagewidth (px) 27
5.09k
| text
stringlengths 2
254
| Language
stringclasses 5
values | Corpus
stringclasses 9
values | Script
stringclasses 6
values | Century
stringclasses 7
values | Image_name
stringlengths 1
30
| NER_ann
stringlengths 0
574
|
---|---|---|---|---|---|---|---|
dictus Hugo in extrema volun | la | HOME | Textualis | XIII | Vauluisant_9 | [['dictus', 'O', 'O'], ['Hugo', 'B-PERS', 'O'], ['in', 'O', 'O'], ['extrema', 'O', 'O'], ['volun', 'O', 'O']] |
|
roy d’Angleterre, de ses aliez et adhereurs, et ennemis du dit monseigneur le duc et du roy. Et pour ceste cause, | fr | HIMANIS | Cursiva | XIV | FRAN_0021_7796_A | ||
Nunquam, nec poteris, si tamen ipse voles. | la | Bullinger | Cursiva | XVI | 1111638 | ||
la Croiz Jehan le Petit tenant a la terre Robert | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0243R_A | [['la', 'O', 'B-LOC'], ['Croiz', 'O', 'I-LOC'], ['Jehan', 'B-PERS', 'I-LOC'], ['le', 'I-PERS', 'I-LOC'], ['Petit', 'I-PERS', 'I-LOC'], [',', 'O', 'O'], ['tenant', 'O', 'O'], ['a', 'O', 'O'], ['la', 'O', 'O'], ['terre', 'O', 'O'], ['Robert', 'B-PERS', 'O']] |
|
dicti prati quod penes vos positum est in sequestra | la | HOME | Cursiva antiquior | XIII | Pontigny_5 | ||
tes et chascune par soi et le droit et l’escheoi | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0259V_A | [['tes', 'O', 'O'], ['et', 'O', 'O'], ['chascune', 'O', 'O'], ['par', 'O', 'O'], ['soi', 'O', 'O'], [',', 'O', 'O'], ['et', 'O', 'O'], ['le', 'O', 'O'], ['droit', 'O', 'O'], ['et', 'O', 'O'], ["l'escheoi", 'O', 'O']] |
|
et etiam ordinata . et ut premissa perpetuum robur firmitatis optineant sigillis curie | la | HOME | Textualis | XIII | S.Nicaise_Reims_102 | ||
mediate post ipsum . In cujus rei testimonium ego Therricus dominus de Ulme- | la | MLH | Cursiva | XIV | liber_feudorum_1308-036_batch | ||
de lor fiés et de lor demmaine qui sient dedens les murs de | fr | MLH | Cursiva | XIV | liber_feudorum_1308-029_batch | ||
sua dederunt nobis LX solidos in censu de Bena . | la | HOME | Cursiva antiquior | XIII | Pontigny_23 | ||
cun an a la saint Martin an yver sus son four de | fr | HOME | Cursiva | XIII | Nesle_51 | ||
levé et receu les emolumens de la terre de Belleville, durant le temps que monsiegneur Fouques de Mataz en avoit esté | fr | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ082_0358V_A | ||
no Domini Mo CCo XXX secundo mense mayo . | la | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0204V_A | [['no', 'O', 'O'], ['Domini', 'O', 'O'], ['Mo', 'O', 'O'], ['CCo', 'O', 'O'], ['XXX', 'O', 'O'], ['secundo', 'O', 'O'], [',', 'O', 'O'], ['mense', 'O', 'O'], ['mayo', 'O', 'O'], ['.', 'O', 'O']] |
|
censibus redditibus omnibus proventibus omnique | la | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0255R_A | [['censibus', 'O', 'O'], [',', 'O', 'O'], ['redditibus', 'O', 'O'], [',', 'O', 'O'], ['omnibus', 'O', 'O'], ['proventibus', 'O', 'O'], ['omnique', 'O', 'O']] |
|
Domini P. Mercerii et Johannes Hais magni vicarii qui pluries supplicaverunt dominis ut haberent eos recommendatos | la | E-NDP | Cursiva | XV | FRAN_0393_02667_L | ||
nea non coacti et ex certa scientia quod contra venditionem | la | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0257V_A | [['nea', 'O', 'O'], [',', 'O', 'O'], ['non', 'O', 'O'], ['coacti', 'O', 'O'], ['et', 'O', 'O'], ['ex', 'O', 'O'], ['certa', 'O', 'O'], ['scientia', 'O', 'O'], [',', 'O', 'O'], ['quod', 'O', 'O'], ['contra', 'O', 'O'], ['venditionem', 'O', 'O'], [',', 'O', 'O']] |
|
Collacio medie prebenda | la | E-NDP | Cursiva | XV | FRAN_0393_02803_L | ||
combustum demolitum et radicitus destructum extiterit adeo | la | HOME | Semi-Hybrida | XII | Clairmarais_12 | ||
mosinam quam Milo dominus de Herviaco prede | la | HOME | Cursiva antiquior | XIII | Pontigny_27 | ||
- unaesportilla con canela | es | CODEA | Cursiva | XVI | CODEA-3584_1r | ||
et a lui appartient puet ou pourroit apartenir les choses qui s’ensuient et chascune d’icelles, | fr | HOME | Cursiva | XIV | Navarre_092 | [['et', 'O', 'O'], ['a', 'O', 'O'], ['lui', 'O', 'O'], ['appartient', 'O', 'O'], [',', 'O', 'O'], ['puet', 'O', 'O'], ['ou', 'O', 'O'], ['pourroit', 'O', 'O'], ['apartenir', 'O', 'O'], [',', 'O', 'O'], ['les', 'O', 'O'], ['choses', 'O', 'O'], ['qui', 'O', 'O'], ["s'ensuient", 'O', 'O'], ['et', 'O', 'O'], ['chascune', 'O', 'O'], ["d'icelles", 'O', 'O'], [',', 'O', 'O']] |
|
royaume sont à present, especialment pour eschiver vostre travail, ne volons mie que vous veingnez à la dicte journée, mez pour | fr | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ055_0014R_A | ||
G. de Kaer | la | E-NDP | Cursiva | XV | FRAN_0393_01064_L | ||
isti prenominati et, ut breviter concludam, omnes qui quicquam alodii ad Mo¬ | la | HOME | Praegotica | XII | molesmes_0001v | ||
quidem taxatio seu appreciatio eis legitima videbatur et ea erant plenarie | la | HOME | Cursiva | XIV | Navarre_025 | [['quidem', 'O', 'O'], ['taxatio', 'O', 'O'], ['seu', 'O', 'O'], ['appreciatio', 'O', 'O'], ['eis', 'O', 'O'], ['legitima', 'O', 'O'], ['videbatur', 'O', 'O'], ['et', 'O', 'O'], ['ea', 'O', 'O'], ['erant', 'O', 'O'], ['plenarie', 'O', 'O']] |
|
concessa habeant imperpetuum roboris firmitatem, ea omnia, prout in prescriptis litteris continentur, rata habemus et grata, eaque volumus, | fr | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ064_0381V_A | ||
Toledo diziendo quela dicha plaça hera comun dela çibdad e vezinos | es | CODEA | Cursiva | XVI | CODEA-0202_1r | ||
[sextarium frumenti scilicet septem sextarios de molitura et unam] minam frumenti in crastino oc | la | HOME | Textualis | XIII | Vauluisant_11 | ||
a tous cappitaines de gens d'armes et de tret cappitaines | fr | HOME | Cursiva | XV | Morchesne_f153 | ||
trouveroit et se aultrement se faisoit ledit seigneur Nicolle dist qu'ilz en feroit telz choses | fr | MLH | Cursiva | XV | Chronique de Praillon_405 | ||
in territorio Pon | la | HOME | Cursiva antiquior | XIII | Pontigny_13 | ||
qui est devant dis , et cil d’Esternay et de Bydebourch sera neans . | fr | MLH | Cursiva | XIV | liber_feudorum_1308-050_batch | ||
eerste aanmaning van den Notaris | nl | VOC | Cursiva | XVII | NL-0400410000_26_009014_000309 | ||
ac si esset vel essent sicut presentes littere sigillata . Quod ut firmum et stabile | la | HOME | Cursiva | XIV | Navarre_146 | [['ac', 'O', 'O'], ['si', 'O', 'O'], ['esset', 'O', 'O'], ['vel', 'O', 'O'], ['essent', 'O', 'O'], ['sicut', 'O', 'O'], ['presentes', 'O', 'O'], ['littere', 'O', 'O'], ['sigillata', 'O', 'O'], ['.', 'O', 'O'], ['Quod', 'O', 'O'], ['ut', 'O', 'O'], ['firmum', 'O', 'O'], ['et', 'O', 'O'], ['stabile', 'O', 'O']] |
|
habebamus quando manebant in locis supradicte societa¬ | la | HOME | Textualis | XII | molesmes_2_0151r | ||
leur deusmes dire c’est assavoir quant au cardinal de Boloigne | fr | HOME | Cursiva | XIV | Navarre_140 | [['leur', 'O', 'O'], ['deusmes', 'O', 'O'], ['dire', 'O', 'O'], [',', 'O', 'O'], ["c'est", 'O', 'O'], ['assavoir', 'O', 'O'], [',', 'O', 'O'], ['quant', 'O', 'O'], ['au', 'O', 'O'], ['cardinal', 'O', 'O'], ['de', 'O', 'O'], ['Boloigne', 'O', 'B-LOC'], [',', 'O', 'O']] |
|
congnoissance des briefs de patronage et de lay fieu et d’aumosne | fr | HOME | Cursiva | XIV | Navarre_140 | [['congnoissance', 'O', 'O'], ['des', 'O', 'O'], ['briefs', 'O', 'O'], ['de', 'O', 'O'], ['patronage', 'O', 'O'], ['et', 'O', 'O'], ['de', 'O', 'O'], ['lay', 'O', 'O'], ['fieu', 'O', 'O'], ['et', 'O', 'O'], ["d'aumosne", 'O', 'O'], [',', 'O', 'O']] |
|
miserunt se reddere quadraginta libras Parisienses nomine pene | la | HOME | Cursiva antiquior | XIII | ND_Roche_4 | ||
veroit. Et pour ce, Guyot Mautemps vint avant et mist par dessus enchiere de quatre vins livres, | fr | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ082_0359V_A | ||
le faire garder de par nous, que les gens du dit Edouart de Gales ont depuis occuppé, | fr | HIMANIS | Cursiva | XIV | FRAN_0021_2609_A | ||
salva vita Adeline nobilis mulieris matris di | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0261V_A | [['salva', 'O', 'O'], ['vita', 'O', 'O'], ['Adeline', 'B-PERS', 'O'], [',', 'O', 'O'], ['nobilis', 'O', 'O'], ['mulieris', 'O', 'O'], ['matris', 'O', 'O'], ['di', 'O', 'O']] |
|
supra terram natalis fabri . Item quinque quarteria siliginis | la | HOME | Semi-Hybrida | XII | Clairmarais_46 | ||
quaterviginti ostisiarum vel circiter item terrarum | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0280R_A | [['quaterviginti', 'O', 'O'], ['ostisiarum', 'O', 'O'], ['vel', 'O', 'O'], ['circiter', 'O', 'O'], [',', 'O', 'O'], ['item', 'O', 'O'], ['terrarum', 'O', 'O']] |
|
fiauffés qui s'ensuient c'est assavoir le maistre Guillaume Paien la Gautier Paien celle | fr | HOME | Cursiva | XIV | Navarre_030 | [['fiauffés', 'O', 'O'], ['qui', 'O', 'O'], ["s'ensuient", 'O', 'O'], [',', 'O', 'O'], ["c'est", 'O', 'O'], ['assavoir', 'O', 'O'], ['le', 'O', 'O'], ['maistre', 'O', 'O'], ['Guillaume', 'B-PERS', 'O'], ['Paien', 'I-PERS', 'O'], [',', 'O', 'O'], ['la', 'O', 'O'], ['Gautier', 'B-PERS', 'O'], ['Paien', 'I-PERS', 'O'], [',', 'O', 'O'], ['celle', 'O', 'O']] |
|
que ce soit aucune chose contre les choses dessus dictes ne aucune d’icelles | fr | HOME | Cursiva | XIV | Navarre_136 | [['que', 'O', 'O'], ['ce', 'O', 'O'], ['soit', 'O', 'O'], [',', 'O', 'O'], ['aucune', 'O', 'O'], ['chose', 'O', 'O'], ['contre', 'O', 'O'], ['les', 'O', 'O'], ['choses', 'O', 'O'], ['dessus', 'O', 'O'], ['dictes', 'O', 'O'], ['ne', 'O', 'O'], ['aucune', 'O', 'O'], ["d'icelles", 'O', 'O'], [',', 'O', 'O']] |
|
pres avint que par le conseil des bonnes gens et pour | fr | HOME | Textualis | XIII | Fervaques_15 | [['pres', 'O', 'O'], ['avint', 'O', 'O'], ['que', 'O', 'O'], ['par', 'O', 'O'], ['le', 'O', 'O'], ['conseil', 'O', 'O'], ['des', 'O', 'O'], ['bonnes', 'O', 'O'], ['gens', 'O', 'O'], ['et', 'O', 'O'], ['pour', 'O', 'O']] |
|
per alios nichil decetero jure aliquo reclamabunt | la | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0205V_A | ||
de Baz, Guido prepositus de Gurgeio, Girardus de Bassé, Petrus cliens Hugonis, Argotus de | la | HOME | Praegotica | XII | molesmes_0061r | ||
anchvor d hi Scholt als underii hie vor ec- | de | MLH | Cursiva | XIV | liber_feudorum_1308-120_batch | ||
estauble par la requeste de dit Jasuet nos havons mis nostre seaul en ces | fr | HOME | Cursiva | XIII | Nesle_98 | ||
Savoir faisons que pour consideracion des bons et aggreables | fr | HOME | Cursiva | XV | Morchesne_f056 | ||
presens scriptum pervenerit Stephanus permissione | la | HOME | Cursiva antiquior | XIII | Pontigny_3 | ||
ou terroit de Harvilli et de Herbercourt ou destroit et en le | fr | HOME | Textualis | XIII | Fervaques_51 | [['ou', 'O', 'O'], ['terroit', 'O', 'O'], ['de', 'O', 'O'], ['Harvilli', 'O', 'B-LOC'], ['et', 'O', 'O'], ['de', 'O', 'O'], ['Herbercourt', 'O', 'B-LOC'], [',', 'O', 'O'], ['ou', 'O', 'O'], ['destroit', 'O', 'O'], ['et', 'O', 'O'], ['en', 'O', 'O'], ['le', 'O', 'O']] |
|
2146 | de | VOC | Cursiva | XVII | NL-HlmNHA_1972_704_0135 | ||
dezer akte daarvoor te | nl | VOC | Cursiva | XVII | NL-HlmNHA_1972_755_0062 | ||
in posterum questionem moturum . Verum si | la | HOME | Cursiva antiquior | XIII | Pontigny_56 | ||
cardinalis ac bibliothecarii . ° Idus aprilis indictione VIa Incarnationis dominice anno millesimo C° | la | HOME | Textualis | XIII | S.Nicaise_Reims_34 | ||
randiam contra omnes iuri et iusticie parere volentes . | la | HOME | Textualis | XIII | Fervaques_69 | [['randiam', 'O', 'O'], ['contra', 'O', 'O'], ['omnes', 'O', 'O'], ['iuri', 'O', 'O'], ['et', 'O', 'O'], ['iusticie', 'O', 'O'], ['parere', 'O', 'O'], ['volentes', 'O', 'O'], ['.', 'O', 'O']] |
|
Omnipotentis Dei clementiam cunctis animi votis et officio vocis debemus incessanter glorificare, | la | HOME | Praegotica | XII | molesmes_0052v | ||
Karolus, Dei gratia, Francorum et Navarre rex. Notum facimus universis, tam presentibus quam futuris, quod nos dilectorum nostrorum episcopi et capituli ecclesie de Luxonio Sancti | la | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ061_0158R_A | ||
Du Boys | la | E-NDP | Cursiva | XV | LL123_0012_Right | ||
drissig und fûnff jar et cetera . | de | K�nigsfelden | Textualis | XIV | U-17_0587_r | ||
nana por ques fiesta de san bernabe no nos partimos luego por que | es | CODEA | Cursiva | XVI | codea1428v | ||
cie perpetuo contra omnes . se heredes suos | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0285R_A | ||
beate Marie et abbati et conventui Pontiniacensi duas pecias | la | HOME | Textualis | XIII | 49 | ||
sue et pro anniversario suo faciendo singulis annis X solidos supercensuales quos habere di | la | HOME | Textualis | XIII | S.Nicaise_Reims_107 | ||
lo qual todo que dicho es ordenamos & mandamos E somos seruidos E nos plaze quese | es | CODEA | Cursiva | XVI | codea1415_v | ||
de voluntate et consensu capituli nostri, ecclesiam de Frain¬ | la | HOME | Textualis | XII | molesmes_2_0002r | ||
Ten verzoeke van den Hoog wel Geboren Heer Pieter | nl | VOC | Cursiva | XVII | NL-HtBHIC_7637_77_0200 | ||
apponi sigillum . Actum Remis mense januarii anno M° CCC° XVIo . | fr | HOME | Cursiva | XIV | Navarre_040 | [['apponi', 'O', 'O'], ['sigillum', 'O', 'O'], ['.', 'O', 'O'], ['Actum', 'O', 'O'], ['Remis', 'O', 'B-LOC'], [',', 'O', 'O'], ['mense', 'O', 'O'], ['januarii', 'O', 'O'], [',', 'O', 'O'], ['anno', 'O', 'O'], ['M', 'O', 'O'], ['CCC', 'O', 'O'], ['XVIo', 'O', 'O'], ['.', 'O', 'O']] |
|
graves conciliarunt et decumbunt cum | la | Bullinger | Cursiva | XVI | Bullinger_878 | ||
pro alias xl s. quos ecclesia debet ipsis capellanis responsum est quod informet | la | E-NDP | Cursiva | XV | FRAN_0393_02998_L | ||
- unarcaz denog al consu çeRadura grande pu | es | CODEA | Cursiva | XVI | CODEA-3591_2r | ||
terram que dicitur Hugonis Catti infra bannum duarum villarum videlicet de Maisnil et de Hun | la | HOME | Textualis | XIII | S.Nicaise_Reims_64 | ||
ad diem martis post instans festum beati Martini Hyemalis | la | E-NDP | Cursiva | XV | FRAN_0393_00806_L | ||
foederati nostri exercitum mittere, | la | Bullinger | Cursiva | XVI | Bullinger_5291 | ||
Dyonisio de Passu | la | E-NDP | Cursiva | XV | FRAN_0393_08381_L | ||
pulerunt et adhuc, ut asseritur, compellunt indebitè et injustè, non solum in ipsorum conquerencium prejudicium, verum eciam in fo | la | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ064_0194R_A | ||
parler de Loys conte d’Evreux nostre tres cher frere et Marguerite fille jadiz | fr | HOME | Cursiva | XIV | Navarre_010 | [['parler', 'O', 'O'], ['de', 'O', 'O'], ['Loys', 'B-PERS', 'O'], [',', 'I-PERS', 'O'], ['conte', 'I-PERS', 'O'], ["d'Evreux", 'I-PERS', 'B-LOC'], [',', 'O', 'O'], ['nostre', 'O', 'O'], ['tres', 'O', 'O'], ['cher', 'O', 'O'], ['frere', 'O', 'O'], [',', 'O', 'O'], ['et', 'O', 'O'], ['Marguerite', 'B-PERS', 'O'], [',', 'O', 'O'], ['fille', 'O', 'O'], ['jadiz', 'O', 'O']] |
|
sigilli nostri munimine duximus | la | HOME | Textualis | XIII | Vauluisant_20 | [['sigilli', 'O', 'O'], ['nostri', 'O', 'O'], ['munimine', 'O', 'O'], ['duximus', 'O', 'O']] |
|
Raymundum de Esculto et Arnaldum Masgarones bacalarios in legibus et Petrum Rigald | la | E-NDP | Cursiva | XV | FRAN_0393_09341_L | ||
sus dites et chascunne d’icelles garder | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0280R_A | ||
Universitati vestre notum facimus | la | HOME | Textualis | XIII | Vauluisant_27 | [['Universitati', 'O', 'O'], ['vestre', 'O', 'O'], ['notum', 'O', 'O'], ['facimus', 'O', 'O']] |
|
hùsern buwtent , schuldig , dero eben vil weren , nit usrichten woͤlten , dann mit fùrworten , das sy inen daran ettwas ablasz von hagels und wetters wegen , uber sy gangen tuͦn und | de | K�nigsfelden | Textualis | XIV | U-17_0720_r | ||
etc. | fr | HOME | Cursiva | XV | Morchesne_f187 | ||
sonval quadraginta virgas . et debent dicte terre capitulo unum | fr | HOME | Textualis | XIII | Fervaques_52 | [['sonval', 'O', 'I-LOC'], ['quadraginta', 'O', 'O'], ['virgas', 'O', 'O'], [';', 'O', 'O'], ['et', 'O', 'O'], ['debent', 'O', 'O'], ['dicte', 'O', 'O'], ['terre', 'O', 'O'], ['capitulo', 'O', 'O'], ['unum', 'O', 'O']] |
|
Compains | la | E-NDP | Cursiva | XV | FRAN_0393_08632_L | ||
boissellum avene in prato re | la | HOME | Textualis | XIII | Vauluisant_63 | [['boissellum', 'O', 'O'], ['avene', 'O', 'O'], [';', 'O', 'O'], ['in', 'O', 'O'], ['prato', 'O', 'O'], ['re', 'O', 'O']] |
|
sterulo donavit atque concessit in perpetuum | la | HOME | Cursiva antiquior | XIII | Pontigny_3 | ||
quereles li devant dis rois de France pooit determiner | fr | MLH | Cursiva | XIV | liber_feudorum_1308-081_batch | ||
defecerit eidem persolvendum . prefati Gilo et pentecosta eius | la | HOME | Semi-Hybrida | XII | Clairmarais_99 | ||
En medina del Canpo domingo diez & seys dias de setyenbre de mill & quinientos & veynte annos se pregono lo suso dicho publica | es | CODEA | Cursiva | XVI | 00000HJG | ||
menti et alia medietate ordei . de quibus odierna relicta | la | HOME | Semi-Hybrida | XII | Clairmarais_10 | ||
que adiacent finibus grangi | la | HOME | Textualis | XIII | Vauluisant_38 | [['que', 'O', 'O'], ['adiacent', 'O', 'O'], ['finibus', 'O', 'O'], ['grangi', 'O', 'O']] |
|
ab initio novembris ad hunc usque diem aegrotavit, nondum convaluit. | la | Bullinger | Cursiva | XVI | Bullinger_8469 | ||
comme admortiz et a Dieu dediez sanz ce qu'ilz soient tenus | fr | HOME | Cursiva | XV | Morchesne_f163 | ||
excepcionibus que possent sibi competere et dicte ecclesie | la | HOME | Semi-Hybrida | XII | Clairmarais_10 | ||
et tant alerent et vindrent les diz messaigez devers Charles, nostre chier ainsné filz, et devers le dit roy d'Angleterre, | fr | HIMANIS | Cursiva | XIV | FRCHANJJ_JJ091_0110R_A | ||
Aaliz la Galote tient derechief un arpent de | fr | HOME | Textualis | XIII | FRCHANJJ_JJ1157_0257R_A | [['Aaliz', 'B-PERS', 'O'], ['la', 'I-PERS', 'O'], ['Galote', 'I-PERS', 'O'], ['tient', 'O', 'O'], [',', 'O', 'O'], ['derechief', 'O', 'O'], ['un', 'O', 'O'], ['arpent', 'O', 'O'], ['de', 'O', 'O']] |
|
Ego Hodo dux Burgundie notum fa | la | HOME | Cursiva antiquior | XIII | Pontigny_5 |
This is the first version of the dataset derived from the corpora used for TRIDIS (Tria Digita Scribunt).
TRIDIS encompasses a series of Handwriting Text Recognition (HTR) models trained using semi-diplomatic transcriptions of medieval and early modern manuscripts.
The semi-diplomatic transcription approach involves resolving abbreviations found in the original manuscripts and normalizing Punctuation and Allographs.
The dataset contains approximately 4,000 pages of manuscripts and is particularly suitable for working with documentary sources – manuscripts originating from legal, administrative, and memorial practices. Examples include registers, feudal books, charters, proceedings, and accounting records, primarily dating from the Late Middle Ages (13th century onwards).
The dataset covers Western European regions (mainly Spain, France, and Germany) and spans the 12th to the 17th centuries.
Corpora
The original ground-truth corpora are available under CC BY licenses on online repositories:
- The Alcar-HOME database (HOME): https://zenodo.org/record/5600884
- The e-NDP corpus (E-NDP): https://zenodo.org/record/7575693
- The Himanis project (HIMANIS): https://zenodo.org/record/5535306
- Königsfelden Abbey corpus (Konigsfelden): https://zenodo.org/record/5179361
- 6000 ground truth of VOC and notarial deeds (VOC) : https://zenodo.org/records/4159268
- Bullinger, Ruolph Gwalther: https://zenodo.org/records/4780947
- CODEA: https://corpuscodea.es/
- Monumenta Luxemburgensia (MLH): www.tridis.me
Citation
There is a pre-print presenting this corpus:
@article{aguilar2025tridis,
title={TRIDIS: A Comprehensive Medieval and Early Modern Corpus for HTR and NER},
author={Aguilar, Sergio Torres},
journal={arXiv preprint arXiv:2503.22714},
year={2025}
}
How to Get Started with this DataSet
Use this Python code to easily train a TrOCR model with the TRIDIS dataset:
#Use Transformers==4.43.0
#Note: Data augmentation is omitted here but strongly recommended.
import torch
from PIL import Image
import torchvision.transforms as transforms
from torch.utils.data import Dataset
from datasets import load_dataset # Import load_dataset
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
TrOCRProcessor,
VisionEncoderDecoderModel,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
default_data_collator
)
from evaluate import load
# --- START MODIFIED SECTION ---
# Load the dataset from Hugging Face
dataset = load_dataset("magistermilitum/Tridis")
print("Dataset loaded.")
# Initialize the processor
# Use the specific processor associated with the TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") #or the large version for better performance
print("Processor loaded.")
# --- Custom Dataset Modified for Deferred Loading (No Augmentation) ---
class CustomDataset(Dataset):
def __init__(self, hf_dataset, processor, max_target_length=160):
"""
Args:
hf_dataset: The dataset loaded by Hugging Face (datasets.Dataset).
processor: The TrOCR processor.
max_target_length: Maximum length for the target labels.
"""
self.hf_dataset = hf_dataset
self.processor = processor
self.max_target_length = max_target_length
# --- EFFICIENT FILTERING ---
# Filter here to know the actual length and avoid processing invalid samples in __getitem__
# Use indices to maintain the efficiency of accessing the original dataset
self.valid_indices = [
i for i, text in enumerate(self.hf_dataset["text"])
if isinstance(text, str) and 3 < len(text) < 257 # Filter based on text length
]
print(f"Dataset filtered. Valid samples: {len(self.valid_indices)} / {len(self.hf_dataset)}")
def __len__(self):
# The length is the number of valid indices after filtering
return len(self.valid_indices)
def __getitem__(self, idx):
# Get the original index in the Hugging Face dataset
original_idx = self.valid_indices[idx]
# Load the specific sample from the Hugging Face dataset
item = self.hf_dataset[original_idx]
image = item["image"]
text = item["text"]
# Ensure the image is PIL and RGB
if not isinstance(image, Image.Image):
# If not PIL (rare with load_dataset, but for safety)
# Assume it can be loaded by PIL or is a numpy array
try:
image = Image.fromarray(image).convert("RGB")
except:
# Fallback or error handling if conversion fails
print(f"Error converting image at original index {original_idx}. Using placeholder.")
# Returning a placeholder might be better handled by the collator or skipping.
# For now, repeating the first valid sample as a placeholder (not ideal).
item = self.hf_dataset[self.valid_indices[0]]
image = item["image"].convert("RGB")
text = item["text"]
else:
image = image.convert("RGB")
# Process image using the TrOCR processor
try:
# The processor handles resizing and normalization
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
except Exception as e:
print(f"Error processing image at original index {original_idx}: {e}. Using placeholder.")
# Create a black placeholder tensor if processing fails
# Ensure the size matches the expected input size for the model
img_size = self.processor.feature_extractor.size
# Check if size is defined as int or dict/tuple
if isinstance(img_size, int):
h = w = img_size
elif isinstance(img_size, dict) and 'height' in img_size and 'width' in img_size:
h = img_size['height']
w = img_size['width']
elif isinstance(img_size, (tuple, list)) and len(img_size) == 2:
h, w = img_size
else: # Default fallback size if uncertain
h, w = 384, 384 # Common TrOCR size, adjust if needed
pixel_values = torch.zeros((3, h, w))
# Tokenize the text
labels = self.processor.tokenizer(
text,
padding="max_length",
max_length=self.max_target_length,
truncation=True # Important to add truncation just in case
).input_ids
# Replace pad tokens with -100 to ignore in the loss function
labels = [label if label != self.processor.tokenizer.pad_token_id else -100
for label in labels]
encoding = {
# .squeeze() removes dimensions of size 1, necessary as we process one image at a time
"pixel_values": pixel_values.squeeze(),
"labels": torch.tensor(labels)
}
return encoding
# --- Create Instances of the Modified Dataset ---
# Pass the Hugging Face dataset directly
train_dataset = CustomDataset(dataset["train"], processor)
eval_dataset = CustomDataset(dataset["validation"], processor)
print(f"\nNumber of training examples (valid and filtered): {len(train_dataset)}")
print(f"Number of validation examples (valid and filtered): {len(eval_dataset)}")
# --- END MODIFIED SECTION ---
# Load pretrained model
print("\nLoading pre-trained model...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
model.to(device)
print(f"Model loaded on: {device}")
# Configure the model for fine-tuning
print("Configuring model...")
model.config.decoder.is_decoder = True # Explicitly set decoder flag
model.config.decoder.add_cross_attention = True # Ensure decoder attends to encoder outputs
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id # Start generation with CLS token
model.config.pad_token_id = processor.tokenizer.pad_token_id # Set pad token ID
model.config.vocab_size = model.config.decoder.vocab_size # Set vocabulary size
model.config.eos_token_id = processor.tokenizer.sep_token_id # Set end-of-sequence token ID
# Generation configuration (influences evaluation and inference)
model.config.max_length = 160 # Max generated sequence length
model.config.early_stopping = True # Stop generation early if EOS is reached
model.config.no_repeat_ngram_size = 3 # Prevent repetitive n-grams
model.config.length_penalty = 2.0 # Encourage longer sequences slightly
model.config.num_beams = 3 # Use beam search for better quality generation
# Metrics
print("Loading metrics...")
cer_metric = load("cer")
wer_metric = load("wer")
def compute_metrics(pred):
labels_ids = pred.label_ids
pred_ids = pred.predictions
# Replace -100 with pad_token_id for correct decoding
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
# Decode predictions and labels
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
# Calculate CER and WER
cer = cer_metric.compute(predictions=pred_str, references=label_str)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
print(f"\nEvaluation Step Metrics - CER: {cer:.4f}, WER: {wer:.4f}") # Print metrics
return {"cer": cer, "wer": wer} # Return metrics required by Trainer
# Training configuration
batch_size_train = 32 # Adjust based on GPU memory, 32 for 48GB of vram
batch_size_eval = 32 # Adjust based on GPU memory
epochs = 10 # Number of training epochs (15 recommended)
print("\nConfiguring training arguments...")
training_args = Seq2SeqTrainingArguments(
predict_with_generate=True, # Use generate for evaluation (needed for CER/WER)
per_device_train_batch_size=batch_size_train,
per_device_eval_batch_size=batch_size_eval,
fp16=True if device == "cuda" else False, # Enable mixed precision training on GPU
output_dir="./trocr-model-tridis", # Directory to save model checkpoints
logging_strategy="steps",
logging_steps=10, # Log training loss every 50 steps
evaluation_strategy='steps', # Evaluate every N steps
eval_steps=5000, # Adjust based on dataset size
save_strategy='steps', # Save checkpoint every N steps
save_steps=5000, # Match eval steps)
num_train_epochs=epochs,
save_total_limit=3, # Keep only the last 3 checkpoints
learning_rate=7e-5, # Learning rate for the optimizer
weight_decay=0.01, # Weight decay for regularization
warmup_ratio=0.05, # Percentage of training steps for learning rate warmup
lr_scheduler_type="cosine", # Learning rate scheduler type (better than linear)
dataloader_num_workers=8, # Use multiple workers for data loading (adjust based on CPU cores)
# report_to="tensorboard", # Uncomment to enable TensorBoard logging
)
# Initialize the Trainer
trainer = Seq2SeqTrainer(
model=model,
tokenizer=processor.feature_extractor, # Pass the feature_extractor for collation
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=default_data_collator, # Default collator handles padding inputs/labels
)
# Start Training
print("\n--- Starting Training ---")
try:
trainer.train()
print("\n--- Training Completed ---")
except Exception as e:
error_message = f"Error during training: {e}"
print(error_message)
# Consider saving a checkpoint on error if needed
# trainer.save_model("./trocr-model-magistermilitum-interrupted")
# Save the final model and processor
print("Saving final model and processor...")
# Ensure the final directory name is consistent
final_save_path = "./trocr-model-tridis-final"
trainer.save_model(final_save_path)
processor.save_pretrained(final_save_path) # Save the processor alongside the model
print(f"Model and processor saved to {final_save_path}")
# Clean up CUDA cache if GPU was used
if device == "cuda":
torch.cuda.empty_cache()
print("CUDA cache cleared.")
- Downloads last month
- 603
Models trained or fine-tuned on magistermilitum/Tridis
