Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
27
5.09k
text
stringlengths
2
254
Language
stringclasses
5 values
Corpus
stringclasses
9 values
Script
stringclasses
6 values
Century
stringclasses
7 values
Image_name
stringlengths
1
30
NER_ann
stringlengths
0
574
dictus Hugo in extrema volun
la
HOME
Textualis
XIII
Vauluisant_9
[['dictus', 'O', 'O'], ['Hugo', 'B-PERS', 'O'], ['in', 'O', 'O'], ['extrema', 'O', 'O'], ['volun', 'O', 'O']]
roy d’Angleterre, de ses aliez et adhereurs, et ennemis du dit monseigneur le duc et du roy. Et pour ceste cause,
fr
HIMANIS
Cursiva
XIV
FRAN_0021_7796_A
Nunquam, nec poteris, si tamen ipse voles.
la
Bullinger
Cursiva
XVI
1111638
la Croiz Jehan le Petit tenant a la terre Robert
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0243R_A
[['la', 'O', 'B-LOC'], ['Croiz', 'O', 'I-LOC'], ['Jehan', 'B-PERS', 'I-LOC'], ['le', 'I-PERS', 'I-LOC'], ['Petit', 'I-PERS', 'I-LOC'], [',', 'O', 'O'], ['tenant', 'O', 'O'], ['a', 'O', 'O'], ['la', 'O', 'O'], ['terre', 'O', 'O'], ['Robert', 'B-PERS', 'O']]
dicti prati quod penes vos positum est in sequestra
la
HOME
Cursiva antiquior
XIII
Pontigny_5
tes et chascune par soi et le droit et l’escheoi
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0259V_A
[['tes', 'O', 'O'], ['et', 'O', 'O'], ['chascune', 'O', 'O'], ['par', 'O', 'O'], ['soi', 'O', 'O'], [',', 'O', 'O'], ['et', 'O', 'O'], ['le', 'O', 'O'], ['droit', 'O', 'O'], ['et', 'O', 'O'], ["l'escheoi", 'O', 'O']]
et etiam ordinata . et ut premissa perpetuum robur firmitatis optineant sigillis curie
la
HOME
Textualis
XIII
S.Nicaise_Reims_102
mediate post ipsum . In cujus rei testimonium ego Therricus dominus de Ulme-
la
MLH
Cursiva
XIV
liber_feudorum_1308-036_batch
de lor fiés et de lor demmaine qui sient dedens les murs de
fr
MLH
Cursiva
XIV
liber_feudorum_1308-029_batch
sua dederunt nobis LX solidos in censu de Bena .
la
HOME
Cursiva antiquior
XIII
Pontigny_23
cun an a la saint Martin an yver sus son four de
fr
HOME
Cursiva
XIII
Nesle_51
levé et receu les emolumens de la terre de Belleville, durant le temps que monsiegneur Fouques de Mataz en avoit esté
fr
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ082_0358V_A
no Domini Mo CCo XXX secundo mense mayo .
la
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0204V_A
[['no', 'O', 'O'], ['Domini', 'O', 'O'], ['Mo', 'O', 'O'], ['CCo', 'O', 'O'], ['XXX', 'O', 'O'], ['secundo', 'O', 'O'], [',', 'O', 'O'], ['mense', 'O', 'O'], ['mayo', 'O', 'O'], ['.', 'O', 'O']]
censibus redditibus omnibus proventibus omnique
la
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0255R_A
[['censibus', 'O', 'O'], [',', 'O', 'O'], ['redditibus', 'O', 'O'], [',', 'O', 'O'], ['omnibus', 'O', 'O'], ['proventibus', 'O', 'O'], ['omnique', 'O', 'O']]
Domini P. Mercerii et Johannes Hais magni vicarii qui pluries supplicaverunt dominis ut haberent eos recommendatos
la
E-NDP
Cursiva
XV
FRAN_0393_02667_L
nea non coacti et ex certa scientia quod contra venditionem
la
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0257V_A
[['nea', 'O', 'O'], [',', 'O', 'O'], ['non', 'O', 'O'], ['coacti', 'O', 'O'], ['et', 'O', 'O'], ['ex', 'O', 'O'], ['certa', 'O', 'O'], ['scientia', 'O', 'O'], [',', 'O', 'O'], ['quod', 'O', 'O'], ['contra', 'O', 'O'], ['venditionem', 'O', 'O'], [',', 'O', 'O']]
Collacio medie prebenda
la
E-NDP
Cursiva
XV
FRAN_0393_02803_L
combustum demolitum et radicitus destructum extiterit adeo
la
HOME
Semi-Hybrida
XII
Clairmarais_12
mosinam quam Milo dominus de Herviaco prede
la
HOME
Cursiva antiquior
XIII
Pontigny_27
- unaesportilla con canela
es
CODEA
Cursiva
XVI
CODEA-3584_1r
et a lui appartient puet ou pourroit apartenir les choses qui s’ensuient et chascune d’icelles,
fr
HOME
Cursiva
XIV
Navarre_092
[['et', 'O', 'O'], ['a', 'O', 'O'], ['lui', 'O', 'O'], ['appartient', 'O', 'O'], [',', 'O', 'O'], ['puet', 'O', 'O'], ['ou', 'O', 'O'], ['pourroit', 'O', 'O'], ['apartenir', 'O', 'O'], [',', 'O', 'O'], ['les', 'O', 'O'], ['choses', 'O', 'O'], ['qui', 'O', 'O'], ["s'ensuient", 'O', 'O'], ['et', 'O', 'O'], ['chascune', 'O', 'O'], ["d'icelles", 'O', 'O'], [',', 'O', 'O']]
royaume sont à present, especialment pour eschiver vostre travail, ne volons mie que vous veingnez à la dicte journée, mez pour
fr
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ055_0014R_A
G. de Kaer
la
E-NDP
Cursiva
XV
FRAN_0393_01064_L
isti prenominati et, ut breviter concludam, omnes qui quicquam alodii ad Mo¬
la
HOME
Praegotica
XII
molesmes_0001v
quidem taxatio seu appreciatio eis legitima videbatur et ea erant plenarie
la
HOME
Cursiva
XIV
Navarre_025
[['quidem', 'O', 'O'], ['taxatio', 'O', 'O'], ['seu', 'O', 'O'], ['appreciatio', 'O', 'O'], ['eis', 'O', 'O'], ['legitima', 'O', 'O'], ['videbatur', 'O', 'O'], ['et', 'O', 'O'], ['ea', 'O', 'O'], ['erant', 'O', 'O'], ['plenarie', 'O', 'O']]
concessa habeant imperpetuum roboris firmitatem, ea omnia, prout in prescriptis litteris continentur, rata habemus et grata, eaque volumus,
fr
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ064_0381V_A
Toledo diziendo quela dicha plaça hera comun dela çibdad e vezinos
es
CODEA
Cursiva
XVI
CODEA-0202_1r
[sextarium frumenti scilicet septem sextarios de molitura et unam] minam frumenti in crastino oc
la
HOME
Textualis
XIII
Vauluisant_11
a tous cappitaines de gens d'armes et de tret cappitaines
fr
HOME
Cursiva
XV
Morchesne_f153
trouveroit et se aultrement se faisoit ledit seigneur Nicolle dist qu'ilz en feroit telz choses
fr
MLH
Cursiva
XV
Chronique de Praillon_405
in territorio Pon
la
HOME
Cursiva antiquior
XIII
Pontigny_13
qui est devant dis , et cil d’Esternay et de Bydebourch sera neans .
fr
MLH
Cursiva
XIV
liber_feudorum_1308-050_batch
eerste aanmaning van den Notaris
nl
VOC
Cursiva
XVII
NL-0400410000_26_009014_000309
ac si esset vel essent sicut presentes littere sigillata . Quod ut firmum et stabile
la
HOME
Cursiva
XIV
Navarre_146
[['ac', 'O', 'O'], ['si', 'O', 'O'], ['esset', 'O', 'O'], ['vel', 'O', 'O'], ['essent', 'O', 'O'], ['sicut', 'O', 'O'], ['presentes', 'O', 'O'], ['littere', 'O', 'O'], ['sigillata', 'O', 'O'], ['.', 'O', 'O'], ['Quod', 'O', 'O'], ['ut', 'O', 'O'], ['firmum', 'O', 'O'], ['et', 'O', 'O'], ['stabile', 'O', 'O']]
habebamus quando manebant in locis supradicte societa¬
la
HOME
Textualis
XII
molesmes_2_0151r
leur deusmes dire c’est assavoir quant au cardinal de Boloigne
fr
HOME
Cursiva
XIV
Navarre_140
[['leur', 'O', 'O'], ['deusmes', 'O', 'O'], ['dire', 'O', 'O'], [',', 'O', 'O'], ["c'est", 'O', 'O'], ['assavoir', 'O', 'O'], [',', 'O', 'O'], ['quant', 'O', 'O'], ['au', 'O', 'O'], ['cardinal', 'O', 'O'], ['de', 'O', 'O'], ['Boloigne', 'O', 'B-LOC'], [',', 'O', 'O']]
congnoissance des briefs de patronage et de lay fieu et d’aumosne
fr
HOME
Cursiva
XIV
Navarre_140
[['congnoissance', 'O', 'O'], ['des', 'O', 'O'], ['briefs', 'O', 'O'], ['de', 'O', 'O'], ['patronage', 'O', 'O'], ['et', 'O', 'O'], ['de', 'O', 'O'], ['lay', 'O', 'O'], ['fieu', 'O', 'O'], ['et', 'O', 'O'], ["d'aumosne", 'O', 'O'], [',', 'O', 'O']]
miserunt se reddere quadraginta libras Parisienses nomine pene
la
HOME
Cursiva antiquior
XIII
ND_Roche_4
veroit. Et pour ce, Guyot Mautemps vint avant et mist par dessus enchiere de quatre vins livres,
fr
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ082_0359V_A
le faire garder de par nous, que les gens du dit Edouart de Gales ont depuis occuppé,
fr
HIMANIS
Cursiva
XIV
FRAN_0021_2609_A
salva vita Adeline nobilis mulieris matris di
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0261V_A
[['salva', 'O', 'O'], ['vita', 'O', 'O'], ['Adeline', 'B-PERS', 'O'], [',', 'O', 'O'], ['nobilis', 'O', 'O'], ['mulieris', 'O', 'O'], ['matris', 'O', 'O'], ['di', 'O', 'O']]
supra terram natalis fabri . Item quinque quarteria siliginis
la
HOME
Semi-Hybrida
XII
Clairmarais_46
quaterviginti ostisiarum vel circiter item terrarum
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0280R_A
[['quaterviginti', 'O', 'O'], ['ostisiarum', 'O', 'O'], ['vel', 'O', 'O'], ['circiter', 'O', 'O'], [',', 'O', 'O'], ['item', 'O', 'O'], ['terrarum', 'O', 'O']]
fiauffés qui s'ensuient c'est assavoir le maistre Guillaume Paien la Gautier Paien celle
fr
HOME
Cursiva
XIV
Navarre_030
[['fiauffés', 'O', 'O'], ['qui', 'O', 'O'], ["s'ensuient", 'O', 'O'], [',', 'O', 'O'], ["c'est", 'O', 'O'], ['assavoir', 'O', 'O'], ['le', 'O', 'O'], ['maistre', 'O', 'O'], ['Guillaume', 'B-PERS', 'O'], ['Paien', 'I-PERS', 'O'], [',', 'O', 'O'], ['la', 'O', 'O'], ['Gautier', 'B-PERS', 'O'], ['Paien', 'I-PERS', 'O'], [',', 'O', 'O'], ['celle', 'O', 'O']]
que ce soit aucune chose contre les choses dessus dictes ne aucune d’icelles
fr
HOME
Cursiva
XIV
Navarre_136
[['que', 'O', 'O'], ['ce', 'O', 'O'], ['soit', 'O', 'O'], [',', 'O', 'O'], ['aucune', 'O', 'O'], ['chose', 'O', 'O'], ['contre', 'O', 'O'], ['les', 'O', 'O'], ['choses', 'O', 'O'], ['dessus', 'O', 'O'], ['dictes', 'O', 'O'], ['ne', 'O', 'O'], ['aucune', 'O', 'O'], ["d'icelles", 'O', 'O'], [',', 'O', 'O']]
pres avint que par le conseil des bonnes gens et pour
fr
HOME
Textualis
XIII
Fervaques_15
[['pres', 'O', 'O'], ['avint', 'O', 'O'], ['que', 'O', 'O'], ['par', 'O', 'O'], ['le', 'O', 'O'], ['conseil', 'O', 'O'], ['des', 'O', 'O'], ['bonnes', 'O', 'O'], ['gens', 'O', 'O'], ['et', 'O', 'O'], ['pour', 'O', 'O']]
per alios nichil decetero jure aliquo reclamabunt
la
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0205V_A
de Baz, Guido prepositus de Gurgeio, Girardus de Bassé, Petrus cliens Hugonis, Argotus de
la
HOME
Praegotica
XII
molesmes_0061r
anchvor d hi Scholt als underii hie vor ec-
de
MLH
Cursiva
XIV
liber_feudorum_1308-120_batch
estauble par la requeste de dit Jasuet nos havons mis nostre seaul en ces
fr
HOME
Cursiva
XIII
Nesle_98
Savoir faisons que pour consideracion des bons et aggreables
fr
HOME
Cursiva
XV
Morchesne_f056
presens scriptum pervenerit Stephanus permissione
la
HOME
Cursiva antiquior
XIII
Pontigny_3
ou terroit de Harvilli et de Herbercourt ou destroit et en le
fr
HOME
Textualis
XIII
Fervaques_51
[['ou', 'O', 'O'], ['terroit', 'O', 'O'], ['de', 'O', 'O'], ['Harvilli', 'O', 'B-LOC'], ['et', 'O', 'O'], ['de', 'O', 'O'], ['Herbercourt', 'O', 'B-LOC'], [',', 'O', 'O'], ['ou', 'O', 'O'], ['destroit', 'O', 'O'], ['et', 'O', 'O'], ['en', 'O', 'O'], ['le', 'O', 'O']]
2146
de
VOC
Cursiva
XVII
NL-HlmNHA_1972_704_0135
dezer akte daarvoor te
nl
VOC
Cursiva
XVII
NL-HlmNHA_1972_755_0062
in posterum questionem moturum . Verum si
la
HOME
Cursiva antiquior
XIII
Pontigny_56
cardinalis ac bibliothecarii . ° Idus aprilis indictione VIa Incarnationis dominice anno millesimo C°
la
HOME
Textualis
XIII
S.Nicaise_Reims_34
randiam contra omnes iuri et iusticie parere volentes .
la
HOME
Textualis
XIII
Fervaques_69
[['randiam', 'O', 'O'], ['contra', 'O', 'O'], ['omnes', 'O', 'O'], ['iuri', 'O', 'O'], ['et', 'O', 'O'], ['iusticie', 'O', 'O'], ['parere', 'O', 'O'], ['volentes', 'O', 'O'], ['.', 'O', 'O']]
Omnipotentis Dei clementiam cunctis animi votis et officio vocis debemus incessanter glorificare,
la
HOME
Praegotica
XII
molesmes_0052v
Karolus, Dei gratia, Francorum et Navarre rex. Notum facimus universis, tam presentibus quam futuris, quod nos dilectorum nostrorum episcopi et capituli ecclesie de Luxonio Sancti
la
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ061_0158R_A
Du Boys
la
E-NDP
Cursiva
XV
LL123_0012_Right
drissig und fûnff jar et cetera .
de
K�nigsfelden
Textualis
XIV
U-17_0587_r
nana por ques fiesta de san bernabe no nos partimos luego por que
es
CODEA
Cursiva
XVI
codea1428v
cie perpetuo contra omnes . se heredes suos
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0285R_A
beate Marie et abbati et conventui Pontiniacensi duas pecias
la
HOME
Textualis
XIII
49
sue et pro anniversario suo faciendo singulis annis X solidos supercensuales quos habere di
la
HOME
Textualis
XIII
S.Nicaise_Reims_107
lo qual todo que dicho es ordenamos & mandamos E somos seruidos E nos plaze quese
es
CODEA
Cursiva
XVI
codea1415_v
de voluntate et consensu capituli nostri, ecclesiam de Frain¬
la
HOME
Textualis
XII
molesmes_2_0002r
Ten verzoeke van den Hoog wel Geboren Heer Pieter
nl
VOC
Cursiva
XVII
NL-HtBHIC_7637_77_0200
apponi sigillum . Actum Remis mense januarii anno M° CCC° XVIo .
fr
HOME
Cursiva
XIV
Navarre_040
[['apponi', 'O', 'O'], ['sigillum', 'O', 'O'], ['.', 'O', 'O'], ['Actum', 'O', 'O'], ['Remis', 'O', 'B-LOC'], [',', 'O', 'O'], ['mense', 'O', 'O'], ['januarii', 'O', 'O'], [',', 'O', 'O'], ['anno', 'O', 'O'], ['M', 'O', 'O'], ['CCC', 'O', 'O'], ['XVIo', 'O', 'O'], ['.', 'O', 'O']]
graves conciliarunt et decumbunt cum
la
Bullinger
Cursiva
XVI
Bullinger_878
pro alias xl s. quos ecclesia debet ipsis capellanis responsum est quod informet
la
E-NDP
Cursiva
XV
FRAN_0393_02998_L
- unarcaz denog al consu çeRadura grande pu
es
CODEA
Cursiva
XVI
CODEA-3591_2r
terram que dicitur Hugonis Catti infra bannum duarum villarum videlicet de Maisnil et de Hun
la
HOME
Textualis
XIII
S.Nicaise_Reims_64
ad diem martis post instans festum beati Martini Hyemalis
la
E-NDP
Cursiva
XV
FRAN_0393_00806_L
foederati nostri exercitum mittere,
la
Bullinger
Cursiva
XVI
Bullinger_5291
Dyonisio de Passu
la
E-NDP
Cursiva
XV
FRAN_0393_08381_L
pulerunt et adhuc, ut asseritur, compellunt indebitè et injustè, non solum in ipsorum conquerencium prejudicium, verum eciam in fo
la
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ064_0194R_A
parler de Loys conte d’Evreux nostre tres cher frere et Marguerite fille jadiz
fr
HOME
Cursiva
XIV
Navarre_010
[['parler', 'O', 'O'], ['de', 'O', 'O'], ['Loys', 'B-PERS', 'O'], [',', 'I-PERS', 'O'], ['conte', 'I-PERS', 'O'], ["d'Evreux", 'I-PERS', 'B-LOC'], [',', 'O', 'O'], ['nostre', 'O', 'O'], ['tres', 'O', 'O'], ['cher', 'O', 'O'], ['frere', 'O', 'O'], [',', 'O', 'O'], ['et', 'O', 'O'], ['Marguerite', 'B-PERS', 'O'], [',', 'O', 'O'], ['fille', 'O', 'O'], ['jadiz', 'O', 'O']]
sigilli nostri munimine duximus
la
HOME
Textualis
XIII
Vauluisant_20
[['sigilli', 'O', 'O'], ['nostri', 'O', 'O'], ['munimine', 'O', 'O'], ['duximus', 'O', 'O']]
Raymundum de Esculto et Arnaldum Masgarones bacalarios in legibus et Petrum Rigald
la
E-NDP
Cursiva
XV
FRAN_0393_09341_L
sus dites et chascunne d’icelles garder
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0280R_A
Universitati vestre notum facimus
la
HOME
Textualis
XIII
Vauluisant_27
[['Universitati', 'O', 'O'], ['vestre', 'O', 'O'], ['notum', 'O', 'O'], ['facimus', 'O', 'O']]
hùsern buwtent , schuldig , dero eben vil weren , nit usrichten woͤlten , dann mit fùrworten , das sy inen daran ettwas ablasz von hagels und wetters wegen , uber sy gangen tuͦn und
de
K�nigsfelden
Textualis
XIV
U-17_0720_r
etc.
fr
HOME
Cursiva
XV
Morchesne_f187
sonval quadraginta virgas . et debent dicte terre capitulo unum
fr
HOME
Textualis
XIII
Fervaques_52
[['sonval', 'O', 'I-LOC'], ['quadraginta', 'O', 'O'], ['virgas', 'O', 'O'], [';', 'O', 'O'], ['et', 'O', 'O'], ['debent', 'O', 'O'], ['dicte', 'O', 'O'], ['terre', 'O', 'O'], ['capitulo', 'O', 'O'], ['unum', 'O', 'O']]
Compains
la
E-NDP
Cursiva
XV
FRAN_0393_08632_L
boissellum avene in prato re
la
HOME
Textualis
XIII
Vauluisant_63
[['boissellum', 'O', 'O'], ['avene', 'O', 'O'], [';', 'O', 'O'], ['in', 'O', 'O'], ['prato', 'O', 'O'], ['re', 'O', 'O']]
sterulo donavit atque concessit in perpetuum
la
HOME
Cursiva antiquior
XIII
Pontigny_3
quereles li devant dis rois de France pooit determiner
fr
MLH
Cursiva
XIV
liber_feudorum_1308-081_batch
defecerit eidem persolvendum . prefati Gilo et pentecosta eius
la
HOME
Semi-Hybrida
XII
Clairmarais_99
En medina del Canpo domingo diez & seys dias de setyenbre de mill & quinientos & veynte annos se pregono lo suso dicho publica
es
CODEA
Cursiva
XVI
00000HJG
menti et alia medietate ordei . de quibus odierna relicta
la
HOME
Semi-Hybrida
XII
Clairmarais_10
que adiacent finibus grangi
la
HOME
Textualis
XIII
Vauluisant_38
[['que', 'O', 'O'], ['adiacent', 'O', 'O'], ['finibus', 'O', 'O'], ['grangi', 'O', 'O']]
ab initio novembris ad hunc usque diem aegrotavit, nondum convaluit.
la
Bullinger
Cursiva
XVI
Bullinger_8469
comme admortiz et a Dieu dediez sanz ce qu'ilz soient tenus
fr
HOME
Cursiva
XV
Morchesne_f163
excepcionibus que possent sibi competere et dicte ecclesie
la
HOME
Semi-Hybrida
XII
Clairmarais_10
et tant alerent et vindrent les diz messaigez devers Charles, nostre chier ainsné filz, et devers le dit roy d'Angleterre,
fr
HIMANIS
Cursiva
XIV
FRCHANJJ_JJ091_0110R_A
Aaliz la Galote tient derechief un arpent de
fr
HOME
Textualis
XIII
FRCHANJJ_JJ1157_0257R_A
[['Aaliz', 'B-PERS', 'O'], ['la', 'I-PERS', 'O'], ['Galote', 'I-PERS', 'O'], ['tient', 'O', 'O'], [',', 'O', 'O'], ['derechief', 'O', 'O'], ['un', 'O', 'O'], ['arpent', 'O', 'O'], ['de', 'O', 'O']]
Ego Hodo dux Burgundie notum fa
la
HOME
Cursiva antiquior
XIII
Pontigny_5
End of preview. Expand in Data Studio

This is the first version of the dataset derived from the corpora used for TRIDIS (Tria Digita Scribunt).

TRIDIS encompasses a series of Handwriting Text Recognition (HTR) models trained using semi-diplomatic transcriptions of medieval and early modern manuscripts.

The semi-diplomatic transcription approach involves resolving abbreviations found in the original manuscripts and normalizing Punctuation and Allographs.

The dataset contains approximately 4,000 pages of manuscripts and is particularly suitable for working with documentary sources – manuscripts originating from legal, administrative, and memorial practices. Examples include registers, feudal books, charters, proceedings, and accounting records, primarily dating from the Late Middle Ages (13th century onwards).

The dataset covers Western European regions (mainly Spain, France, and Germany) and spans the 12th to the 17th centuries.

Corpora

The original ground-truth corpora are available under CC BY licenses on online repositories:

Citation

There is a pre-print presenting this corpus:

@article{aguilar2025tridis,
  title={TRIDIS: A Comprehensive Medieval and Early Modern Corpus for HTR and NER},
  author={Aguilar, Sergio Torres},
  journal={arXiv preprint arXiv:2503.22714},
  year={2025}
}

How to Get Started with this DataSet

Use this Python code to easily train a TrOCR model with the TRIDIS dataset:

#Use Transformers==4.43.0
#Note: Data augmentation is omitted here but strongly recommended.

import torch
from PIL import Image

import torchvision.transforms as transforms
from torch.utils.data import Dataset
from datasets import load_dataset # Import load_dataset
from transformers import (
    AutoFeatureExtractor,
    AutoTokenizer,
    TrOCRProcessor,
    VisionEncoderDecoderModel,
    Seq2SeqTrainer,
    Seq2SeqTrainingArguments,
    default_data_collator
)
from evaluate import load

# --- START MODIFIED SECTION ---

# Load the dataset from Hugging Face
dataset = load_dataset("magistermilitum/Tridis")
print("Dataset loaded.")

# Initialize the processor
# Use the specific processor associated with the TrOCR model
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") #or the large version for better performance
print("Processor loaded.")

# --- Custom Dataset Modified for Deferred Loading (No Augmentation) ---
class CustomDataset(Dataset):
    def __init__(self, hf_dataset, processor, max_target_length=160):
        """
        Args:
            hf_dataset: The dataset loaded by Hugging Face (datasets.Dataset).
            processor: The TrOCR processor.
            max_target_length: Maximum length for the target labels.
        """
        self.hf_dataset = hf_dataset
        self.processor = processor
        self.max_target_length = max_target_length

        # --- EFFICIENT FILTERING ---
        # Filter here to know the actual length and avoid processing invalid samples in __getitem__
        # Use indices to maintain the efficiency of accessing the original dataset
        self.valid_indices = [
            i for i, text in enumerate(self.hf_dataset["text"])
            if isinstance(text, str) and 3 < len(text) < 257 # Filter based on text length
        ]
        print(f"Dataset filtered. Valid samples: {len(self.valid_indices)} / {len(self.hf_dataset)}")

    def __len__(self):
        # The length is the number of valid indices after filtering
        return len(self.valid_indices)

    def __getitem__(self, idx):
        # Get the original index in the Hugging Face dataset
        original_idx = self.valid_indices[idx]

        # Load the specific sample from the Hugging Face dataset
        item = self.hf_dataset[original_idx]
        image = item["image"]
        text = item["text"]

        # Ensure the image is PIL and RGB
        if not isinstance(image, Image.Image):
            # If not PIL (rare with load_dataset, but for safety)
            # Assume it can be loaded by PIL or is a numpy array
            try:
                image = Image.fromarray(image).convert("RGB")
            except:
                # Fallback or error handling if conversion fails
                print(f"Error converting image at original index {original_idx}. Using placeholder.")
                # Returning a placeholder might be better handled by the collator or skipping.
                # For now, repeating the first valid sample as a placeholder (not ideal).
                item = self.hf_dataset[self.valid_indices[0]]
                image = item["image"].convert("RGB")
                text = item["text"]
        else:
            image = image.convert("RGB")

        # Process image using the TrOCR processor
        try:
            # The processor handles resizing and normalization
            pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
        except Exception as e:
             print(f"Error processing image at original index {original_idx}: {e}. Using placeholder.")
             # Create a black placeholder tensor if processing fails
             # Ensure the size matches the expected input size for the model
             img_size = self.processor.feature_extractor.size
             # Check if size is defined as int or dict/tuple
             if isinstance(img_size, int):
                 h = w = img_size
             elif isinstance(img_size, dict) and 'height' in img_size and 'width' in img_size:
                 h = img_size['height']
                 w = img_size['width']
             elif isinstance(img_size, (tuple, list)) and len(img_size) == 2:
                 h, w = img_size
             else: # Default fallback size if uncertain
                 h, w = 384, 384 # Common TrOCR size, adjust if needed
             pixel_values = torch.zeros((3, h, w))


        # Tokenize the text
        labels = self.processor.tokenizer(
            text,
            padding="max_length",
            max_length=self.max_target_length,
            truncation=True # Important to add truncation just in case
        ).input_ids

        # Replace pad tokens with -100 to ignore in the loss function
        labels = [label if label != self.processor.tokenizer.pad_token_id else -100
                  for label in labels]

        encoding = {
            # .squeeze() removes dimensions of size 1, necessary as we process one image at a time
            "pixel_values": pixel_values.squeeze(),
            "labels": torch.tensor(labels)
        }
        return encoding

# --- Create Instances of the Modified Dataset ---
# Pass the Hugging Face dataset directly
train_dataset = CustomDataset(dataset["train"], processor)
eval_dataset = CustomDataset(dataset["validation"], processor)

print(f"\nNumber of training examples (valid and filtered): {len(train_dataset)}")
print(f"Number of validation examples (valid and filtered): {len(eval_dataset)}")

# --- END MODIFIED SECTION ---


# Load pretrained model
print("\nLoading pre-trained model...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
model.to(device)
print(f"Model loaded on: {device}")

# Configure the model for fine-tuning
print("Configuring model...")
model.config.decoder.is_decoder = True # Explicitly set decoder flag
model.config.decoder.add_cross_attention = True # Ensure decoder attends to encoder outputs
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id # Start generation with CLS token
model.config.pad_token_id = processor.tokenizer.pad_token_id # Set pad token ID
model.config.vocab_size = model.config.decoder.vocab_size # Set vocabulary size
model.config.eos_token_id = processor.tokenizer.sep_token_id # Set end-of-sequence token ID

# Generation configuration (influences evaluation and inference)
model.config.max_length = 160 # Max generated sequence length
model.config.early_stopping = True # Stop generation early if EOS is reached
model.config.no_repeat_ngram_size = 3 # Prevent repetitive n-grams
model.config.length_penalty = 2.0 # Encourage longer sequences slightly
model.config.num_beams = 3 # Use beam search for better quality generation

# Metrics
print("Loading metrics...")
cer_metric = load("cer")
wer_metric = load("wer")

def compute_metrics(pred):
    labels_ids = pred.label_ids
    pred_ids = pred.predictions

    # Replace -100 with pad_token_id for correct decoding
    labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id

    # Decode predictions and labels
    pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
    label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)

    # Calculate CER and WER
    cer = cer_metric.compute(predictions=pred_str, references=label_str)
    wer = wer_metric.compute(predictions=pred_str, references=label_str)

    print(f"\nEvaluation Step Metrics - CER: {cer:.4f}, WER: {wer:.4f}") # Print metrics

    return {"cer": cer, "wer": wer} # Return metrics required by Trainer


# Training configuration
batch_size_train = 32 # Adjust based on GPU memory, 32 for 48GB of vram
batch_size_eval = 32  # Adjust based on GPU memory
epochs = 10 # Number of training epochs (15 recommended)

print("\nConfiguring training arguments...")
training_args = Seq2SeqTrainingArguments(
    predict_with_generate=True,       # Use generate for evaluation (needed for CER/WER)
    per_device_train_batch_size=batch_size_train,
    per_device_eval_batch_size=batch_size_eval,
    fp16=True if device == "cuda" else False, # Enable mixed precision training on GPU
    output_dir="./trocr-model-tridis", # Directory to save model checkpoints
    logging_strategy="steps",
    logging_steps=10,                 # Log training loss every 50 steps
    evaluation_strategy='steps',      # Evaluate every N steps
    eval_steps=5000,                  # Adjust based on dataset size
    save_strategy='steps',            # Save checkpoint every N steps
    save_steps=5000,                  # Match eval steps)
    num_train_epochs=epochs,
    save_total_limit=3,               # Keep only the last 3 checkpoints
    learning_rate=7e-5,               # Learning rate for the optimizer
    weight_decay=0.01,                # Weight decay for regularization
    warmup_ratio=0.05,                # Percentage of training steps for learning rate warmup
    lr_scheduler_type="cosine",       # Learning rate scheduler type (better than linear)
    dataloader_num_workers=8,         # Use multiple workers for data loading (adjust based on CPU cores)
    # report_to="tensorboard",        # Uncomment to enable TensorBoard logging
)

# Initialize the Trainer
trainer = Seq2SeqTrainer(
    model=model,
    tokenizer=processor.feature_extractor, # Pass the feature_extractor for collation
    args=training_args,
    compute_metrics=compute_metrics,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    data_collator=default_data_collator, # Default collator handles padding inputs/labels
)

# Start Training
print("\n--- Starting Training ---")
try:
    trainer.train()
    print("\n--- Training Completed ---")
except Exception as e:
    error_message = f"Error during training: {e}"
    print(error_message)
    # Consider saving a checkpoint on error if needed
    # trainer.save_model("./trocr-model-magistermilitum-interrupted")

# Save the final model and processor
print("Saving final model and processor...")
# Ensure the final directory name is consistent
final_save_path = "./trocr-model-tridis-final"
trainer.save_model(final_save_path)
processor.save_pretrained(final_save_path) # Save the processor alongside the model
print(f"Model and processor saved to {final_save_path}")

# Clean up CUDA cache if GPU was used
if device == "cuda":
    torch.cuda.empty_cache()
    print("CUDA cache cleared.")
Downloads last month
603

Models trained or fine-tuned on magistermilitum/Tridis