Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -62,14 +62,16 @@ size_categories:
|
|
62 |
---
|
63 |
|
64 |
|
65 |
-
This is the first
|
66 |
-
from medieval and Early Modern Manuscripts.
|
67 |
|
68 |
-
|
69 |
|
70 |
-
The
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
The dataset covers Western Europe areas (Spain, France and Germany mostly) spanning from the 12th to the 17th centuries.
|
73 |
|
74 |
#### Corpora
|
75 |
The original ground-truth corpora are available under CC BY licenses on online repositories:
|
@@ -95,4 +97,255 @@ There is a pre-print presenting this corpus:
|
|
95 |
journal={arXiv preprint arXiv:2503.22714},
|
96 |
year={2025}
|
97 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
```
|
|
|
62 |
---
|
63 |
|
64 |
|
65 |
+
This is the first version of the dataset derived from the corpora used for **TRIDIS** (*Tria Digita Scribunt*).
|
|
|
66 |
|
67 |
+
TRIDIS encompasses a series of Handwriting Text Recognition (HTR) models trained using semi-diplomatic transcriptions of medieval and early modern manuscripts.
|
68 |
|
69 |
+
The semi-diplomatic transcription approach involves resolving abbreviations found in the original manuscripts and normalizing Punctuation and Allographs.
|
70 |
+
|
71 |
+
The dataset contains approximately 4,000 pages of manuscripts and is particularly suitable for working with documentary sources – manuscripts originating from legal, administrative, and memorial practices. Examples include registers, feudal books, charters, proceedings, and accounting records, primarily dating from the Late Middle Ages (13th century onwards).
|
72 |
+
|
73 |
+
The dataset covers Western European regions (mainly Spain, France, and Germany) and spans the 12th to the 17th centuries.
|
74 |
|
|
|
75 |
|
76 |
#### Corpora
|
77 |
The original ground-truth corpora are available under CC BY licenses on online repositories:
|
|
|
97 |
journal={arXiv preprint arXiv:2503.22714},
|
98 |
year={2025}
|
99 |
}
|
100 |
+
```
|
101 |
+
|
102 |
+
### How to Get Started with this DataSet
|
103 |
+
Use this Python code to easily train a TrOCR model with the TRIDIS dataset:
|
104 |
+
|
105 |
+
```python
|
106 |
+
#Use Transformers==4.43.0
|
107 |
+
#Note: Data augmentation is omitted here but strongly recommended.
|
108 |
+
|
109 |
+
import torch
|
110 |
+
from PIL import Image
|
111 |
+
|
112 |
+
import torchvision.transforms as transforms
|
113 |
+
from torch.utils.data import Dataset
|
114 |
+
from datasets import load_dataset # Import load_dataset
|
115 |
+
from transformers import (
|
116 |
+
AutoFeatureExtractor,
|
117 |
+
AutoTokenizer,
|
118 |
+
TrOCRProcessor,
|
119 |
+
VisionEncoderDecoderModel,
|
120 |
+
Seq2SeqTrainer,
|
121 |
+
Seq2SeqTrainingArguments,
|
122 |
+
default_data_collator
|
123 |
+
)
|
124 |
+
from evaluate import load
|
125 |
+
|
126 |
+
# --- START MODIFIED SECTION ---
|
127 |
+
|
128 |
+
# Load the dataset from Hugging Face
|
129 |
+
dataset = load_dataset("magistermilitum/Tridis")
|
130 |
+
print("Dataset loaded.")
|
131 |
+
|
132 |
+
# Initialize the processor
|
133 |
+
# Use the specific processor associated with the TrOCR model
|
134 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") #or the large version for better performance
|
135 |
+
print("Processor loaded.")
|
136 |
+
|
137 |
+
# --- Custom Dataset Modified for Deferred Loading (No Augmentation) ---
|
138 |
+
class CustomDataset(Dataset):
|
139 |
+
def __init__(self, hf_dataset, processor, max_target_length=160):
|
140 |
+
"""
|
141 |
+
Args:
|
142 |
+
hf_dataset: The dataset loaded by Hugging Face (datasets.Dataset).
|
143 |
+
processor: The TrOCR processor.
|
144 |
+
max_target_length: Maximum length for the target labels.
|
145 |
+
"""
|
146 |
+
self.hf_dataset = hf_dataset
|
147 |
+
self.processor = processor
|
148 |
+
self.max_target_length = max_target_length
|
149 |
+
|
150 |
+
# --- EFFICIENT FILTERING ---
|
151 |
+
# Filter here to know the actual length and avoid processing invalid samples in __getitem__
|
152 |
+
# Use indices to maintain the efficiency of accessing the original dataset
|
153 |
+
self.valid_indices = [
|
154 |
+
i for i, text in enumerate(self.hf_dataset["text"])
|
155 |
+
if isinstance(text, str) and 3 < len(text) < 257 # Filter based on text length
|
156 |
+
]
|
157 |
+
print(f"Dataset filtered. Valid samples: {len(self.valid_indices)} / {len(self.hf_dataset)}")
|
158 |
+
|
159 |
+
def __len__(self):
|
160 |
+
# The length is the number of valid indices after filtering
|
161 |
+
return len(self.valid_indices)
|
162 |
+
|
163 |
+
def __getitem__(self, idx):
|
164 |
+
# Get the original index in the Hugging Face dataset
|
165 |
+
original_idx = self.valid_indices[idx]
|
166 |
+
|
167 |
+
# Load the specific sample from the Hugging Face dataset
|
168 |
+
item = self.hf_dataset[original_idx]
|
169 |
+
image = item["image"]
|
170 |
+
text = item["text"]
|
171 |
+
|
172 |
+
# Ensure the image is PIL and RGB
|
173 |
+
if not isinstance(image, Image.Image):
|
174 |
+
# If not PIL (rare with load_dataset, but for safety)
|
175 |
+
# Assume it can be loaded by PIL or is a numpy array
|
176 |
+
try:
|
177 |
+
image = Image.fromarray(image).convert("RGB")
|
178 |
+
except:
|
179 |
+
# Fallback or error handling if conversion fails
|
180 |
+
print(f"Error converting image at original index {original_idx}. Using placeholder.")
|
181 |
+
# Returning a placeholder might be better handled by the collator or skipping.
|
182 |
+
# For now, repeating the first valid sample as a placeholder (not ideal).
|
183 |
+
item = self.hf_dataset[self.valid_indices[0]]
|
184 |
+
image = item["image"].convert("RGB")
|
185 |
+
text = item["text"]
|
186 |
+
else:
|
187 |
+
image = image.convert("RGB")
|
188 |
+
|
189 |
+
# Process image using the TrOCR processor
|
190 |
+
try:
|
191 |
+
# The processor handles resizing and normalization
|
192 |
+
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error processing image at original index {original_idx}: {e}. Using placeholder.")
|
195 |
+
# Create a black placeholder tensor if processing fails
|
196 |
+
# Ensure the size matches the expected input size for the model
|
197 |
+
img_size = self.processor.feature_extractor.size
|
198 |
+
# Check if size is defined as int or dict/tuple
|
199 |
+
if isinstance(img_size, int):
|
200 |
+
h = w = img_size
|
201 |
+
elif isinstance(img_size, dict) and 'height' in img_size and 'width' in img_size:
|
202 |
+
h = img_size['height']
|
203 |
+
w = img_size['width']
|
204 |
+
elif isinstance(img_size, (tuple, list)) and len(img_size) == 2:
|
205 |
+
h, w = img_size
|
206 |
+
else: # Default fallback size if uncertain
|
207 |
+
h, w = 384, 384 # Common TrOCR size, adjust if needed
|
208 |
+
pixel_values = torch.zeros((3, h, w))
|
209 |
+
|
210 |
+
|
211 |
+
# Tokenize the text
|
212 |
+
labels = self.processor.tokenizer(
|
213 |
+
text,
|
214 |
+
padding="max_length",
|
215 |
+
max_length=self.max_target_length,
|
216 |
+
truncation=True # Important to add truncation just in case
|
217 |
+
).input_ids
|
218 |
+
|
219 |
+
# Replace pad tokens with -100 to ignore in the loss function
|
220 |
+
labels = [label if label != self.processor.tokenizer.pad_token_id else -100
|
221 |
+
for label in labels]
|
222 |
+
|
223 |
+
encoding = {
|
224 |
+
# .squeeze() removes dimensions of size 1, necessary as we process one image at a time
|
225 |
+
"pixel_values": pixel_values.squeeze(),
|
226 |
+
"labels": torch.tensor(labels)
|
227 |
+
}
|
228 |
+
return encoding
|
229 |
+
|
230 |
+
# --- Create Instances of the Modified Dataset ---
|
231 |
+
# Pass the Hugging Face dataset directly
|
232 |
+
train_dataset = CustomDataset(dataset["train"], processor)
|
233 |
+
eval_dataset = CustomDataset(dataset["validation"], processor)
|
234 |
+
|
235 |
+
print(f"\nNumber of training examples (valid and filtered): {len(train_dataset)}")
|
236 |
+
print(f"Number of validation examples (valid and filtered): {len(eval_dataset)}")
|
237 |
+
|
238 |
+
# --- END MODIFIED SECTION ---
|
239 |
+
|
240 |
+
|
241 |
+
# Load pretrained model
|
242 |
+
print("\nLoading pre-trained model...")
|
243 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
244 |
+
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
|
245 |
+
model.to(device)
|
246 |
+
print(f"Model loaded on: {device}")
|
247 |
+
|
248 |
+
# Configure the model for fine-tuning
|
249 |
+
print("Configuring model...")
|
250 |
+
model.config.decoder.is_decoder = True # Explicitly set decoder flag
|
251 |
+
model.config.decoder.add_cross_attention = True # Ensure decoder attends to encoder outputs
|
252 |
+
model.config.decoder_start_token_id = processor.tokenizer.cls_token_id # Start generation with CLS token
|
253 |
+
model.config.pad_token_id = processor.tokenizer.pad_token_id # Set pad token ID
|
254 |
+
model.config.vocab_size = model.config.decoder.vocab_size # Set vocabulary size
|
255 |
+
model.config.eos_token_id = processor.tokenizer.sep_token_id # Set end-of-sequence token ID
|
256 |
+
|
257 |
+
# Generation configuration (influences evaluation and inference)
|
258 |
+
model.config.max_length = 160 # Max generated sequence length
|
259 |
+
model.config.early_stopping = True # Stop generation early if EOS is reached
|
260 |
+
model.config.no_repeat_ngram_size = 3 # Prevent repetitive n-grams
|
261 |
+
model.config.length_penalty = 2.0 # Encourage longer sequences slightly
|
262 |
+
model.config.num_beams = 3 # Use beam search for better quality generation
|
263 |
+
|
264 |
+
# Metrics
|
265 |
+
print("Loading metrics...")
|
266 |
+
cer_metric = load("cer")
|
267 |
+
wer_metric = load("wer")
|
268 |
+
|
269 |
+
def compute_metrics(pred):
|
270 |
+
labels_ids = pred.label_ids
|
271 |
+
pred_ids = pred.predictions
|
272 |
+
|
273 |
+
# Replace -100 with pad_token_id for correct decoding
|
274 |
+
labels_ids[labels_ids == -100] = processor.tokenizer.pad_token_id
|
275 |
+
|
276 |
+
# Decode predictions and labels
|
277 |
+
pred_str = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
278 |
+
label_str = processor.batch_decode(labels_ids, skip_special_tokens=True)
|
279 |
+
|
280 |
+
# Calculate CER and WER
|
281 |
+
cer = cer_metric.compute(predictions=pred_str, references=label_str)
|
282 |
+
wer = wer_metric.compute(predictions=pred_str, references=label_str)
|
283 |
+
|
284 |
+
print(f"\nEvaluation Step Metrics - CER: {cer:.4f}, WER: {wer:.4f}") # Print metrics
|
285 |
+
|
286 |
+
return {"cer": cer, "wer": wer} # Return metrics required by Trainer
|
287 |
+
|
288 |
+
|
289 |
+
# Training configuration
|
290 |
+
batch_size_train = 32 # Adjust based on GPU memory, 32 for 48GB of vram
|
291 |
+
batch_size_eval = 32 # Adjust based on GPU memory
|
292 |
+
epochs = 10 # Number of training epochs (15 recommended)
|
293 |
+
|
294 |
+
print("\nConfiguring training arguments...")
|
295 |
+
training_args = Seq2SeqTrainingArguments(
|
296 |
+
predict_with_generate=True, # Use generate for evaluation (needed for CER/WER)
|
297 |
+
per_device_train_batch_size=batch_size_train,
|
298 |
+
per_device_eval_batch_size=batch_size_eval,
|
299 |
+
fp16=True if device == "cuda" else False, # Enable mixed precision training on GPU
|
300 |
+
output_dir="./trocr-model-tridis", # Directory to save model checkpoints
|
301 |
+
logging_strategy="steps",
|
302 |
+
logging_steps=10, # Log training loss every 50 steps
|
303 |
+
evaluation_strategy='steps', # Evaluate every N steps
|
304 |
+
eval_steps=5000, # Adjust based on dataset size
|
305 |
+
save_strategy='steps', # Save checkpoint every N steps
|
306 |
+
save_steps=5000, # Match eval steps)
|
307 |
+
num_train_epochs=epochs,
|
308 |
+
save_total_limit=3, # Keep only the last 3 checkpoints
|
309 |
+
learning_rate=7e-5, # Learning rate for the optimizer
|
310 |
+
weight_decay=0.01, # Weight decay for regularization
|
311 |
+
warmup_ratio=0.05, # Percentage of training steps for learning rate warmup
|
312 |
+
lr_scheduler_type="cosine", # Learning rate scheduler type (better than linear)
|
313 |
+
dataloader_num_workers=8, # Use multiple workers for data loading (adjust based on CPU cores)
|
314 |
+
# report_to="tensorboard", # Uncomment to enable TensorBoard logging
|
315 |
+
)
|
316 |
+
|
317 |
+
# Initialize the Trainer
|
318 |
+
trainer = Seq2SeqTrainer(
|
319 |
+
model=model,
|
320 |
+
tokenizer=processor.feature_extractor, # Pass the feature_extractor for collation
|
321 |
+
args=training_args,
|
322 |
+
compute_metrics=compute_metrics,
|
323 |
+
train_dataset=train_dataset,
|
324 |
+
eval_dataset=eval_dataset,
|
325 |
+
data_collator=default_data_collator, # Default collator handles padding inputs/labels
|
326 |
+
)
|
327 |
+
|
328 |
+
# Start Training
|
329 |
+
print("\n--- Starting Training ---")
|
330 |
+
try:
|
331 |
+
trainer.train()
|
332 |
+
print("\n--- Training Completed ---")
|
333 |
+
except Exception as e:
|
334 |
+
error_message = f"Error during training: {e}"
|
335 |
+
print(error_message)
|
336 |
+
# Consider saving a checkpoint on error if needed
|
337 |
+
# trainer.save_model("./trocr-model-magistermilitum-interrupted")
|
338 |
+
|
339 |
+
# Save the final model and processor
|
340 |
+
print("Saving final model and processor...")
|
341 |
+
# Ensure the final directory name is consistent
|
342 |
+
final_save_path = "./trocr-model-tridis-final"
|
343 |
+
trainer.save_model(final_save_path)
|
344 |
+
processor.save_pretrained(final_save_path) # Save the processor alongside the model
|
345 |
+
print(f"Model and processor saved to {final_save_path}")
|
346 |
+
|
347 |
+
# Clean up CUDA cache if GPU was used
|
348 |
+
if device == "cuda":
|
349 |
+
torch.cuda.empty_cache()
|
350 |
+
print("CUDA cache cleared.")
|
351 |
```
|