Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
2
5
corpus-id
stringlengths
1
5
score
float64
1
1
11546
18572
1
82440
23010
1
82440
77782
1
82440
37697
1
82440
76985
1
82440
82489
1
82440
40412
1
82440
81115
1
82440
66489
1
82440
78789
1
36706
38722
1
36706
75291
1
36706
37292
1
36706
64505
1
19971
17152
1
19971
69036
1
19971
19894
1
19971
13405
1
19971
24575
1
19971
61376
1
19971
27749
1
19971
43042
1
19971
58123
1
19971
60680
1
19971
14766
1
19971
24966
1
19971
34078
1
19971
8616
1
19971
57628
1
19971
64304
1
19971
81224
1
19971
79509
1
19971
664
1
19971
78309
1
19971
51579
1
19971
26726
1
19971
6840
1
19971
25492
1
19971
46010
1
19971
78842
1
19971
22484
1
19971
55451
1
19971
10069
1
19971
58488
1
19971
11120
1
19971
15895
1
19971
69301
1
19971
4184
1
19971
49594
1
19971
25648
1
19971
36469
1
19971
55888
1
19971
768
1
19971
26161
1
19971
5094
1
19971
57171
1
19971
10990
1
19971
20113
1
19971
48214
1
19971
5443
1
19971
34361
1
19971
38551
1
19971
70236
1
19971
25258
1
19971
73035
1
19971
65709
1
19971
56822
1
19971
53675
1
19971
32584
1
19971
37220
1
19971
60863
1
19971
181
1
19971
44632
1
19971
23808
1
19971
81559
1
19971
77256
1
19971
64375
1
19971
24604
1
19971
40
1
19971
37532
1
19971
37314
1
19971
23590
1
19971
58250
1
19971
35014
1
19971
25552
1
19971
71339
1
19971
81967
1
19971
8037
1
19971
25164
1
19971
67221
1
19971
77077
1
19971
34136
1
19971
23515
1
19971
47027
1
19971
75791
1
19971
23349
1
19971
42377
1
19971
15715
1
19971
15779
1
19971
69357
1
End of preview. Expand in Data Studio
YAML Metadata Warning: The task_ids "Question answering" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "Duplicate Detection" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

CQADupstackAndroidRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

CQADupStack: A Benchmark Data Set for Community Question-Answering Research

Task category t2t
Domains Programming, Web, Written, Non-fiction
Reference http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CQADupstackAndroidRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{hoogeveen2015,
  acmid = {2838934},
  address = {New York, NY, USA},
  articleno = {3},
  author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
  booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
  doi = {10.1145/2838931.2838934},
  isbn = {978-1-4503-4040-3},
  location = {Parramatta, NSW, Australia},
  numpages = {8},
  pages = {3:1--3:8},
  publisher = {ACM},
  series = {ADCS '15},
  title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
  url = {http://doi.acm.org/10.1145/2838931.2838934},
  year = {2015},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CQADupstackAndroidRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 23697,
        "number_of_characters": 13713141,
        "num_documents": 22998,
        "min_document_length": 57,
        "average_document_length": 594.701974084703,
        "max_document_length": 27831,
        "unique_documents": 22998,
        "num_queries": 699,
        "min_query_length": 16,
        "average_query_length": 51.76680972818312,
        "max_query_length": 127,
        "unique_queries": 699,
        "none_queries": 0,
        "num_relevant_docs": 1696,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 2.4263233190271816,
        "max_relevant_docs_per_query": 262,
        "unique_relevant_docs": 1696,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
491