Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
1
5
corpus-id
stringlengths
2
5
score
float64
1
1
35544
14789
1
55292
7871
1
55292
32597
1
55294
56341
1
55294
7525
1
55294
7676
1
55294
1302
1
55294
2419
1
19392
2619
1
48026
47994
1
48026
24245
1
25061
21227
1
43874
1450
1
6796
18036
1
46136
43581
1
46136
45094
1
46136
43907
1
37414
148
1
37414
18114
1
37414
29435
1
37414
18798
1
37414
56687
1
37414
2239
1
37414
21433
1
37414
6811
1
37414
29362
1
37414
51121
1
37414
13905
1
37414
45208
1
25285
3044
1
25285
27050
1
25282
26978
1
16252
15637
1
16252
43363
1
16252
30870
1
16252
30687
1
16259
2871
1
16258
16171
1
17250
38971
1
17250
51414
1
46702
23395
1
46702
31894
1
46702
32188
1
24882
25607
1
45447
3458
1
45447
34604
1
45447
41565
1
45447
38858
1
45447
23305
1
45447
41825
1
11950
51618
1
22876
3242
1
3518
4040
1
3510
14460
1
3510
13780
1
2688
43566
1
96
28703
1
96
7999
1
57366
57677
1
30417
17734
1
30417
29540
1
30417
27308
1
13054
28585
1
13054
48344
1
13055
38888
1
18707
18
1
18707
25072
1
18707
26625
1
18707
5059
1
18707
11530
1
18707
51990
1
17826
45028
1
17826
37143
1
17826
50937
1
41569
19843
1
40320
4643
1
40320
35569
1
44421
18393
1
44421
29020
1
44421
47516
1
44421
27634
1
44421
59195
1
44421
45223
1
44421
17767
1
44421
43658
1
44421
14803
1
44421
23153
1
44421
48054
1
44421
34470
1
44421
33546
1
44421
21377
1
44421
20459
1
44421
27372
1
44421
333
1
44421
40297
1
44421
38566
1
44421
44878
1
44421
10918
1
44421
51893
1
44421
34752
1
End of preview. Expand in Data Studio
YAML Metadata Warning: The task_ids "Question answering" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "Duplicate Detection" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

CQADupstackMathematicaRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

CQADupStack: A Benchmark Data Set for Community Question-Answering Research

Task category t2t
Domains Written, Academic, Non-fiction
Reference http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CQADupstackMathematicaRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{hoogeveen2015,
  acmid = {2838934},
  address = {New York, NY, USA},
  articleno = {3},
  author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
  booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
  doi = {10.1145/2838931.2838934},
  isbn = {978-1-4503-4040-3},
  location = {Parramatta, NSW, Australia},
  numpages = {8},
  pages = {3:1--3:8},
  publisher = {ACM},
  series = {ADCS '15},
  title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
  url = {http://doi.acm.org/10.1145/2838931.2838934},
  year = {2015},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CQADupstackMathematicaRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 17509,
        "number_of_characters": 19325188,
        "num_documents": 16705,
        "min_document_length": 75,
        "average_document_length": 1154.4967375037413,
        "max_document_length": 28907,
        "unique_documents": 16705,
        "num_queries": 804,
        "min_query_length": 15,
        "average_query_length": 48.90547263681592,
        "max_query_length": 137,
        "unique_queries": 804,
        "none_queries": 0,
        "num_relevant_docs": 1358,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.6890547263681592,
        "max_relevant_docs_per_query": 56,
        "unique_relevant_docs": 1358,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
404