Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
3
6
corpus-id
stringlengths
1
6
score
float64
1
1
88392
203507
1
16708
66393
1
16708
239180
1
16708
29852
1
88028
48697
1
64671
203618
1
23507
194398
1
8544
99935
1
145437
108240
1
145437
229691
1
145437
207207
1
145437
180001
1
145437
131332
1
145437
129075
1
145437
113313
1
145437
245907
1
145437
239189
1
145437
109602
1
145437
41740
1
145437
163459
1
164599
175824
1
3747
100680
1
3747
43948
1
3747
155488
1
3747
131052
1
3747
141005
1
3747
253273
1
3747
47416
1
3747
211528
1
3747
121844
1
3747
78881
1
3747
221144
1
3747
34227
1
3747
167209
1
3747
247034
1
3747
29788
1
3747
228468
1
3747
141968
1
3747
114316
1
3747
170109
1
3747
39386
1
3747
204639
1
3747
114835
1
3747
126224
1
3747
222641
1
3747
102649
1
3747
222544
1
3747
178856
1
3747
6395
1
3747
167492
1
3747
6268
1
3747
237891
1
3747
109262
1
3747
171295
1
3747
68399
1
3747
192089
1
3747
196847
1
3747
16326
1
3747
202757
1
3747
190048
1
3747
115839
1
3747
171652
1
3747
198244
1
3747
220235
1
3747
238007
1
3747
239018
1
3747
21538
1
3747
188292
1
3747
174770
1
3747
132977
1
3747
199870
1
3747
253622
1
3747
228702
1
3747
146471
1
3747
252588
1
3747
95589
1
3747
101391
1
3747
205786
1
3747
199144
1
3747
255311
1
3747
206404
1
3747
211470
1
3747
197842
1
3747
210078
1
3747
201350
1
3747
132926
1
3747
87114
1
3747
163455
1
3747
234266
1
3747
250746
1
3747
245426
1
3747
215935
1
3747
233169
1
3747
236482
1
3747
188933
1
3747
170894
1
3747
180186
1
3747
225955
1
3747
204872
1
3747
199975
1
End of preview. Expand in Data Studio

CQADupstackProgrammersRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

CQADupStack: A Benchmark Data Set for Community Question-Answering Research

Task category t2t
Domains Programming, Written, Non-fiction
Reference http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CQADupstackProgrammersRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{hoogeveen2015,
  acmid = {2838934},
  address = {New York, NY, USA},
  articleno = {3},
  author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
  booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
  doi = {10.1145/2838931.2838934},
  isbn = {978-1-4503-4040-3},
  location = {Parramatta, NSW, Australia},
  numpages = {8},
  pages = {3:1--3:8},
  publisher = {ACM},
  series = {ADCS '15},
  title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
  url = {http://doi.acm.org/10.1145/2838931.2838934},
  year = {2015},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CQADupstackProgrammersRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 33052,
        "number_of_characters": 34048829,
        "num_documents": 32176,
        "min_document_length": 61,
        "average_document_length": 1056.7033814022875,
        "max_document_length": 21955,
        "unique_documents": 32176,
        "num_queries": 876,
        "min_query_length": 15,
        "average_query_length": 55.1837899543379,
        "max_query_length": 149,
        "unique_queries": 876,
        "none_queries": 0,
        "num_relevant_docs": 1675,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.9121004566210045,
        "max_relevant_docs_per_query": 149,
        "unique_relevant_docs": 1675,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
369