Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
2
6
corpus-id
stringlengths
2
6
score
float64
1
1
103549
2677
1
103549
145152
1
103549
63470
1
103549
114843
1
103549
101237
1
103549
104174
1
103549
88608
1
103549
75088
1
103549
154989
1
103549
48253
1
103549
153087
1
103549
90186
1
103549
18685
1
103549
108860
1
103549
21196
1
103549
144389
1
103549
98778
1
103549
123255
1
103549
80270
1
103549
90387
1
103549
20639
1
103549
14952
1
97157
150175
1
272
127525
1
64672
114358
1
46796
23179
1
49567
68181
1
96131
82357
1
137955
21251
1
137955
150449
1
44421
5251
1
44421
100671
1
111331
11983
1
111331
14867
1
111331
56011
1
629
101924
1
22674
28939
1
60901
17243
1
60905
37950
1
60905
108674
1
92880
88590
1
32222
30189
1
32222
139447
1
75289
28682
1
3747
121408
1
3747
154467
1
3747
88642
1
98103
22394
1
52108
81240
1
24145
28384
1
76162
14270
1
76162
96308
1
76162
73170
1
76162
39837
1
76162
25898
1
76162
147223
1
132669
76189
1
132669
6781
1
132669
126318
1
6777
14831
1
6777
11011
1
6777
46487
1
6777
102647
1
6777
98070
1
140857
67987
1
18583
4632
1
85678
1416
1
85678
129370
1
85678
4335
1
85678
16894
1
85678
31322
1
85678
154579
1
85678
25747
1
85678
61559
1
85678
151092
1
85678
78657
1
85678
148592
1
85678
27312
1
85678
42801
1
85678
47183
1
85678
4830
1
85678
106663
1
124351
2857
1
124351
126186
1
124351
25566
1
124351
84292
1
124351
105203
1
124351
34786
1
124351
106480
1
124356
123711
1
122014
4569
1
122014
111535
1
122014
70406
1
122014
82511
1
122014
25970
1
122014
16024
1
18760
140348
1
89941
74713
1
18765
56720
1
18765
25166
1
End of preview. Expand in Data Studio
YAML Metadata Warning: The task_ids "Question answering" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata Warning: The task_ids "Duplicate Detection" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation

CQADupstackUnixRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

CQADupStack: A Benchmark Data Set for Community Question-Answering Research

Task category t2t
Domains Written, Web, Programming
Reference http://nlp.cis.unimelb.edu.au/resources/cqadupstack/

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["CQADupstackUnixRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{hoogeveen2015,
  acmid = {2838934},
  address = {New York, NY, USA},
  articleno = {3},
  author = {Hoogeveen, Doris and Verspoor, Karin M. and Baldwin, Timothy},
  booktitle = {Proceedings of the 20th Australasian Document Computing Symposium (ADCS)},
  doi = {10.1145/2838931.2838934},
  isbn = {978-1-4503-4040-3},
  location = {Parramatta, NSW, Australia},
  numpages = {8},
  pages = {3:1--3:8},
  publisher = {ACM},
  series = {ADCS '15},
  title = {CQADupStack: A Benchmark Data Set for Community Question-Answering Research},
  url = {http://doi.acm.org/10.1145/2838931.2838934},
  year = {2015},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("CQADupstackUnixRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 48454,
        "number_of_characters": 47711333,
        "num_documents": 47382,
        "min_document_length": 56,
        "average_document_length": 1005.8120383267908,
        "max_document_length": 32623,
        "unique_documents": 47382,
        "num_queries": 1072,
        "min_query_length": 15,
        "average_query_length": 50.32369402985075,
        "max_query_length": 124,
        "unique_queries": 1072,
        "none_queries": 0,
        "num_relevant_docs": 1693,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.5792910447761195,
        "max_relevant_docs_per_query": 22,
        "unique_relevant_docs": 1693,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
757