Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringclasses
1k values
corpus-id
stringlengths
40
40
score
float64
0
1
78495383450e02c5fe817e408726134b3084905d
632589828c8b9fca2c3a59e97451fde8fa7d188d
1
78495383450e02c5fe817e408726134b3084905d
86e87db2dab958f1bd5877dc7d5b8105d6e31e46
1
78495383450e02c5fe817e408726134b3084905d
2a047d8c4c2a4825e0f0305294e7da14f8de6fd3
1
78495383450e02c5fe817e408726134b3084905d
506172b0e0dd4269bdcfe96dda9ea9d8602bbfb6
1
78495383450e02c5fe817e408726134b3084905d
51317b6082322a96b4570818b7a5ec8b2e330f2f
1
78495383450e02c5fe817e408726134b3084905d
857a8c6c46b0a85ed6019f5830294872f2f1dcf5
0
78495383450e02c5fe817e408726134b3084905d
12f107016fd3d062dff88a00d6b0f5f81f00522d
0
78495383450e02c5fe817e408726134b3084905d
1ae0ac5e13134df7a0d670fc08c2b404f1e3803c
0
78495383450e02c5fe817e408726134b3084905d
7d3c9c4064b588d5d8c7c0cb398118aac239c71b
0
78495383450e02c5fe817e408726134b3084905d
305c45fb798afdad9e6d34505b4195fa37c2ee4f
0
78495383450e02c5fe817e408726134b3084905d
9f234867df1f335a76ea07933e4ae1bd34eeb48a
0
78495383450e02c5fe817e408726134b3084905d
5ebfcd50c56e51aada28ccecd041db5e002f5862
0
78495383450e02c5fe817e408726134b3084905d
73a7144e072356b5c9512bd4a87b22457d33760c
0
78495383450e02c5fe817e408726134b3084905d
c2aa3c7fd59a43c949844e98569429261dba36e6
0
78495383450e02c5fe817e408726134b3084905d
befdf0eb1a3d2e0d404e7fbdb43438be7ae607e5
0
78495383450e02c5fe817e408726134b3084905d
506d4ca228f81715946ed1ad8d9205fad20fddfe
0
78495383450e02c5fe817e408726134b3084905d
772205182fbb6ad842df4a6cd937741145eeece0
0
78495383450e02c5fe817e408726134b3084905d
d2018e51b772aba852e54ccc0ba7f0b7c2792115
0
78495383450e02c5fe817e408726134b3084905d
cc76f5d348ab6c3a20ab4adb285fc1ad96d3c009
0
78495383450e02c5fe817e408726134b3084905d
1b2a0e8af5c1f18e47e71244973ce4ace4ac6034
0
78495383450e02c5fe817e408726134b3084905d
c9d41f115eae5e03c5ed45c663d9435cb66ec942
0
78495383450e02c5fe817e408726134b3084905d
b579366db457216b0548220bf369ab9eb183a0cc
0
78495383450e02c5fe817e408726134b3084905d
f69253e97f487b9d77b72553a9115fc814e3ed51
0
78495383450e02c5fe817e408726134b3084905d
6c9bd4bd7e30470e069f8600dadb4fd6d2de6bc1
0
78495383450e02c5fe817e408726134b3084905d
a72daf1fc4b1fc16d3c8a2e33f9aac6e17461d9a
0
78495383450e02c5fe817e408726134b3084905d
585da6b6355f3536e1b12b30ef4c3ea54b955f2d
0
78495383450e02c5fe817e408726134b3084905d
d18cc66f7f87e041dec544a0b843496085ab54e1
0
78495383450e02c5fe817e408726134b3084905d
22fc3af1fb55d48f3c03cd96f277503e92541c60
0
78495383450e02c5fe817e408726134b3084905d
4114c89bec92ebde7c20d12d0303281983ed1df8
0
78495383450e02c5fe817e408726134b3084905d
8e508720cdb495b7821bf6e43c740eeb5f3a444a
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
110599f48c30251aba60f68b8484a7b0307bcb87
1
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
4b53f660eb6cfe9180f9e609ad94df8606724a3d
1
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
7f90ef42f22d4f9b86d33b0ad7f16261273c8612
1
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
033b62167e7358c429738092109311af696e9137
1
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
105a0b3826710356e218685f87b20fe39c64c706
1
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
9ea16bc34448ca9d713f4501f1a6215a26746372
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
746cafc676374114198c414d6426ec2f50e0ff80
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
2b337d6a72c8c2b1d97097dc24ec0e9a8d4c2186
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
1d53a898850b8d055db80ba99c59c89b080dfc4c
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
954d0346b5cdf3f1ec0fcc74ae5aadc5b733adc0
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
483b94374944293d2a6d36cc1c97f0544ce3c79c
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
54c377407242e74e7c08e4a49e61837fd9ce2b25
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
9d1940f843c448cc378214ff6bad3c1279b1911a
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
4d0130e95925b00a2d1ecba931a1a05a74370f3f
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
0651f838d918586ec1df66450c3d324602c9f59e
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
4c9774c5e57a4b7535eb19f6584f75c8b9c2cdcc
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
e645cbd3aaeab56858f1e752677b8792d7377d14
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
40f5430ef326838d5b7ce018f62e51c188d7cdd7
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
24bbff699187ad6bf37e447627de1ca25267a770
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
abd0478f1572d8ecdca4738df3e4b3bd116d7b42
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
a64f48f9810c4788236f31dc2a9b87dd02977c3e
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
76eea8436996c7e9c8f7ad3dac34a12865edab24
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
522a7178e501018e442c03f4b93e29f62ae1eb64
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
ccbcaf528a222d04f40fd03b3cb89d5f78acbdc6
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
30f46fdfe1fdab60bdecaa27aaa94526dfd87ac1
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
892fea843d58852a835f38087bc3b5102123f567
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
ce148df015fc488ac6fc022dac3da53c141e0ea8
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
38d34b02820020aac7f060e84bb6c01b4dee665a
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
b09b43cacd45fd922f7f85b1f8514cb4a775ca5d
0
7dcb308b9292a8bc87d6f7793d2ca5e0e19dfa40
c108437a57bd8f8eaed9e26360ee100074e3f3fc
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
28d3ec156472c35ea8e1b7acad969b725111fe56
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
334c4806912d851ef2117e67728cfa624dbec9a3
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
383ca85aaca9f306ea7ae04fb0b6b76f1e393395
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
3ea9cd35f39e8c128f39f13148e91466715f4ee2
1
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
508119a50e3d4e8b7116c1b56a002de492b2270b
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
c0a39b1b64100b929ec77d33232513ec72089a2e
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
f9cf246008d745f883914d925567bb36df806613
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
53c544145d2fe5fe8c44584f44f36f74393b983e
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
0eaa75861d9e17f2c95bd3f80f48db95bf68a50c
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
24ff5027e7042aeead47ef3071f1a023243078bb
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
2c6835e8bdb8c70a9c3aa9bd2578b01dd1b93114
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
38a70884a93dd6912404519a779cc497965feff1
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
cc6dc5a3e8a18a0aaab7cbe8cee22bf3ac92f0bf
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
45e2e2a327ea696411b212492b053fd328963cc3
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
71795f9f511f6948dd67aff7e9725c08ff1a4c94
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
8cfb12304856268ee438ccb16e4b87960c7349e0
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
a39faa00248abb3984317f2d6830f485cb5e1a0d
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
e749e6311e25eb8081672742e78c427ce5979552
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
d5ecb372f6cbdfb52588fbb4a54be21d510009d0
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
6193ece762c15b7d8a958dc64c37e858cd873b8a
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
2d9416485091e6af3619c4bc9323a0887d450c8a
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
0f28cbfe0674e0af4899d21dd90f6f5d0d5c3f1b
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
cc43c080340817029fd497536cc9bd39b0a76dd2
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
15e8961e8f9d1fb5060c3284a5bdcc09f2fc1ba6
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
36b3865f944c74c6d782c26dfe7be04ef9664a67
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
bb192e0208548831de1475b11859f2114121c662
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
1935e0986939ea6ef2afa01eeef94dbfea6fb6da
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
1ea03bc28a14ade633d5a7fe9af71328834d45ab
0
8c872ecd87945e71fcd9fa1b6cb1133cfe805bf2
55ca165fa6091973674b12ea8fa3f1a3a1e50a6d
0
3a63667284dc8b9687ed1620406030bfe39af3c9
2ae40898406df0a3732acc54f147c1d377f54e2a
1
3a63667284dc8b9687ed1620406030bfe39af3c9
49e85869fa2cbb31e2fd761951d0cdfa741d95f3
1
3a63667284dc8b9687ed1620406030bfe39af3c9
bf07d60ba6d6c6b8cabab72dfce06f203782df8f
1
3a63667284dc8b9687ed1620406030bfe39af3c9
01996726f44253807537cec68393f1fce6a9cafa
1
3a63667284dc8b9687ed1620406030bfe39af3c9
0e1431fa42d76c44911b07078610d4b9254bd4ce
1
3a63667284dc8b9687ed1620406030bfe39af3c9
40cfac582cafeadb0e09e5f020e2febf5cbd4986
0
3a63667284dc8b9687ed1620406030bfe39af3c9
292eee24017356768f1f50b72701ea636dba7982
0
3a63667284dc8b9687ed1620406030bfe39af3c9
ffd7ac9b4fff641d461091d5237321f83bae5216
0
3a63667284dc8b9687ed1620406030bfe39af3c9
6385cd92746386c82a69ffdc3bc0a9da9f64f721
0
3a63667284dc8b9687ed1620406030bfe39af3c9
1d18fba47004a4cf2643c41ca82f6b04904bb134
0
3a63667284dc8b9687ed1620406030bfe39af3c9
922b5eaa5ca03b12d9842b7b84e0e420ccd2feee
0
End of preview. Expand in Data Studio

SCIDOCS

An MTEB dataset
Massive Text Embedding Benchmark

SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation.

Task category t2t
Domains Academic, Written, Non-fiction
Reference https://allenai.org/data/scidocs

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["SCIDOCS"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{specter2020cohan,
  author = {Arman Cohan and Sergey Feldman and Iz Beltagy and Doug Downey and Daniel S. Weld},
  booktitle = {ACL},
  title = {SPECTER: Document-level Representation Learning using Citation-informed Transformers},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("SCIDOCS")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 26657,
        "number_of_characters": 30972050,
        "num_documents": 25657,
        "min_document_length": 11,
        "average_document_length": 1204.3659819932182,
        "max_document_length": 10169,
        "unique_documents": 25657,
        "num_queries": 1000,
        "min_query_length": 16,
        "average_query_length": 71.632,
        "max_query_length": 206,
        "unique_queries": 1000,
        "none_queries": 0,
        "num_relevant_docs": 29928,
        "min_relevant_docs_per_query": 27,
        "average_relevant_docs_per_query": 4.928,
        "max_relevant_docs_per_query": 30,
        "unique_relevant_docs": 25657,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
1,295