|
--- |
|
license: mit |
|
task_categories: |
|
- summarization |
|
- text2text-generation |
|
language: |
|
- en |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: tomasg25/scientific_lay_summarisation |
|
--- |
|
|
|
# scientific_lay_summarisation - elife - normalized |
|
|
|
This is the "_elife_" split. For more words, refer to the [PLOS split README](https://huggingface.co/datasets/pszemraj/scientific_lay_summarisation-plos-norm) |
|
|
|
## Contents |
|
|
|
load with datasets: |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
# If the dataset is gated/private, make sure you have run huggingface-cli login |
|
dataset = load_dataset("pszemraj/scientific_lay_summarisation-elife-norm") |
|
dataset |
|
``` |
|
Output: |
|
|
|
```python |
|
DatasetDict({ |
|
train: Dataset({ |
|
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], |
|
num_rows: 4346 |
|
}) |
|
test: Dataset({ |
|
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], |
|
num_rows: 241 |
|
}) |
|
validation: Dataset({ |
|
features: ['article', 'summary', 'section_headings', 'keywords', 'year', 'title', 'article_length', 'summary_length'], |
|
num_rows: 241 |
|
}) |
|
}) |
|
``` |
|
|
|
|
|
## Lengths |
|
|
|
Train set: |
|
|
|
 |
|
|