|
from datasets import load_from_disk |
|
import albumentations as A |
|
import numpy as np |
|
from collections import defaultdict |
|
import os |
|
from PIL import Image, ImageDraw |
|
from functools import partial |
|
from custom_parser import parse_args |
|
|
|
|
|
|
|
def augment_data_point(batch, args): |
|
assert len(batch["image_id"]) == len(batch["image"]) == len(batch["annotations"]) |
|
transform = A.Compose([ |
|
A.RandomRotate90(p=args.rotate90), |
|
A.HorizontalFlip(p=args.horizontal_flip), |
|
A.RandomBrightnessContrast(p=args.brightness_contrast), |
|
A.ElasticTransform( |
|
alpha=args.elastic_alpha, |
|
sigma=args.elastic_sigma, |
|
p=args.elastic_transform |
|
), |
|
A.Resize(640, 640) |
|
], bbox_params=A.BboxParams( |
|
format="coco", |
|
label_fields=["category_ids"], |
|
)) |
|
|
|
new_batch = defaultdict(list) |
|
for id, image, annotations in zip(batch["image_id"], batch["image"], batch["annotations"]): |
|
image_np = np.array(image) |
|
bboxes = [ann["bbox"] for ann in annotations] |
|
category_ids = [ann["category_id"] for ann in annotations] |
|
|
|
transformed = transform(image=image_np, bboxes=bboxes, category_ids=category_ids) |
|
transformed_image = Image.fromarray(transformed["image"]) |
|
|
|
transformed_annotations = [] |
|
for ann, new_bbox in zip(annotations, transformed["bboxes"]): |
|
new_ann = ann.copy() |
|
new_ann["bbox"] = new_bbox |
|
transformed_annotations.append(new_ann) |
|
new_batch["image_id"].append(id) |
|
new_batch["image"].append(transformed_image) |
|
new_batch["annotations"].append(transformed_annotations) |
|
|
|
return new_batch |
|
|
|
|
|
|
|
def validation_transform(batch): |
|
assert len(batch["image_id"]) == len(batch["image"]) == len(batch["annotations"]) |
|
transform = A.Compose([ |
|
A.Resize(640, 640) |
|
], bbox_params=A.BboxParams( |
|
format="coco", |
|
label_fields=["category_ids"], |
|
)) |
|
|
|
new_batch = defaultdict(list) |
|
for id, image, annotations in zip(batch["image_id"], batch["image"], batch["annotations"]): |
|
image_np = np.array(image) |
|
bboxes = [ann["bbox"] for ann in annotations] |
|
category_ids = [ann["category_id"] for ann in annotations] |
|
|
|
transformed = transform(image=image_np, bboxes=bboxes, category_ids=category_ids) |
|
transformed_image = Image.fromarray(transformed["image"]) |
|
|
|
transformed_annotations = [] |
|
for ann, new_bbox in zip(annotations, transformed["bboxes"]): |
|
new_ann = ann.copy() |
|
new_ann["bbox"] = new_bbox |
|
transformed_annotations.append(new_ann) |
|
new_batch["image_id"].append(id) |
|
new_batch["image"].append(transformed_image) |
|
new_batch["annotations"].append(transformed_annotations) |
|
|
|
return new_batch |
|
|
|
|
|
def save_sample(dataset, idx, filename, save_dir="augmented_samples"): |
|
os.makedirs(save_dir, exist_ok=True) |
|
sample = dataset[idx] |
|
image = sample["image"] |
|
bboxes = [ann["bbox"] for ann in sample["annotations"]] |
|
|
|
|
|
image = image.convert("RGB") |
|
|
|
|
|
draw = ImageDraw.Draw(image) |
|
for bbox in bboxes: |
|
x, y, w, h = bbox |
|
draw.rectangle([x, y, x + w, y + h], outline="red", width=3) |
|
|
|
|
|
image_path = os.path.join(save_dir, filename) |
|
image.save(image_path) |
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
dataset = load_from_disk(args.dataset_path) |
|
|
|
train_dataset = dataset["train"] |
|
augmented_train_dataset = train_dataset.with_transform(lambda batch: augment_data_point(batch, args)) |
|
valid_dataset = dataset["val"].with_transform(validation_transform) |
|
|
|
for i in range(5): |
|
save_sample(augmented_train_dataset, i, f"augmented_sample_{i}.png") |
|
save_sample(train_dataset, i, f"original_sample_{i}.png") |
|
save_sample(valid_dataset, i, f"validation_image_{i}.png") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|