Tony Fang commited on
Commit
d67ed13
·
1 Parent(s): 437e9f0

added transformer_benchmark

Browse files
.gitignore CHANGED
@@ -7,3 +7,7 @@
7
  object_detector_benchmark/yolo_benchmark/*
8
  !object_detector_benchmark/yolo_benchmark/
9
  !object_detector_benchmark/yolo_benchmark/*.yaml
 
 
 
 
 
7
  object_detector_benchmark/yolo_benchmark/*
8
  !object_detector_benchmark/yolo_benchmark/
9
  !object_detector_benchmark/yolo_benchmark/*.yaml
10
+ object_detector_benchmark/8_calves_arrow/
11
+ object_detector_benchmark/8_calves_coco/
12
+ object_detector_benchmark/transformer_benchmark/runs
13
+ object_detector_benchmark/transformer_benchmark/__pycache__
README.md CHANGED
@@ -110,7 +110,15 @@ T = [
110
  ```
111
 
112
  Step 4:
113
- run the yolo detectors following ultralytic's documentations.
 
 
 
 
 
 
 
 
114
 
115
 
116
  ### Identity Classification
 
110
  ```
111
 
112
  Step 4:
113
+ run the yolo detectors following the following steps:
114
+
115
+ ```
116
+ cd yolo_benchmark
117
+
118
+ Model_Name=yolov9t
119
+
120
+ yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name
121
+ ```
122
 
123
 
124
  ### Identity Classification
object_detector_benchmark/data_wrangling.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datasets import Dataset, DatasetDict, Image, Features, Value, Sequence
4
+
5
+ def create_split_dataset(coco_dir, split):
6
+ """Create a dataset for a single split with exact annotation format"""
7
+ with open(os.path.join(coco_dir, f"{split}.json")) as f:
8
+ coco_data = json.load(f)
9
+
10
+ # Create annotation map with full COCO fields
11
+ ann_map = {img['id']: [] for img in coco_data['images']}
12
+ for ann in coco_data['annotations']:
13
+ ann_map[ann['image_id']].append({
14
+ 'id': ann['id'],
15
+ 'category_id': 0,
16
+ 'bbox': [float(x) for x in ann['bbox']], # Ensure float values
17
+ 'area': float(ann['area']),
18
+ 'iscrowd': int(ann.get('iscrowd', 0))
19
+ })
20
+
21
+ # Build dataset entries with exact format
22
+ dataset = []
23
+ for img in coco_data['images']:
24
+ dataset.append({
25
+ 'image_id': int(img['id']),
26
+ 'image': {'path': os.path.join(coco_dir, img['file_name'])},
27
+ 'annotations': ann_map[img['id']] # List of annotation dicts
28
+ })
29
+
30
+ # Define features schema
31
+ features = Features({
32
+ 'image_id': Value('int64'),
33
+ 'image': Image(),
34
+ 'annotations': [{
35
+ 'id': Value('int64'),
36
+ 'category_id': Value('int64'),
37
+ 'bbox': [Value('float32')], # List of floats for bbox
38
+ 'area': Value('float32'),
39
+ 'iscrowd': Value('int64')
40
+ }]
41
+ })
42
+
43
+ return Dataset.from_list(dataset, features=features)
44
+
45
+ # Configuration
46
+ coco_dir = "8_calves_coco"
47
+ debug_limits = {"train": 50, "val": 20, "test": 10}
48
+ seed = 42
49
+
50
+ # Initialize containers
51
+ full_dataset = DatasetDict()
52
+ debug_dataset = DatasetDict()
53
+
54
+ # Process splits
55
+ for split in ["train", "val", "test"]:
56
+ # Create full split dataset
57
+ full_split = create_split_dataset(coco_dir, split)
58
+ full_dataset[split] = full_split
59
+
60
+ # Create debug version with random samples
61
+ debug_split = full_split.shuffle(seed=seed).select(range(debug_limits[split]))
62
+ debug_dataset[split] = debug_split
63
+
64
+ # Save debug first
65
+ # debug_dataset.save_to_disk("cache_debug")
66
+ # print(f"✅ Debug cache saved with {sum(len(d) for d in debug_dataset.values())} samples")
67
+
68
+ # Save full dataset
69
+ full_dataset.save_to_disk("8_calves_arrow")
70
+ print(f"✅ Full cache saved with {sum(len(d) for d in full_dataset.values())} samples")
object_detector_benchmark/transformer_benchmark/Configs/conditional_detr.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_path: "../8_calves_arrow"
2
+ save_directory: "runs"
3
+
4
+ model_name: "microsoft/conditional-detr-resnet-50"
5
+
6
+ # Training Hyperparameters
7
+ num_train_epochs: 100
8
+
9
+ # Learning Rates
10
+ learning_rates:
11
+ model: 1e-5
12
+ class_labels_classifier: 1e-4
13
+ bbox_predictor: 1e-4
14
+
15
+ # Scheduler Type
16
+
17
+ lr_scheduler_type: "constant_with_warmup"
18
+
19
+ # Weight Decay
20
+ weight_decay: 1e-4 # or just set 0
21
+
22
+ # Batch Sizes
23
+ train_batch_size: 5
24
+ eval_batch_size: 25
25
+ dataloader_num_workers: 8
26
+
27
+ # Gradient Clipping
28
+ max_grad_norm: 0.1
29
+
30
+ # Warm up
31
+ warmup_steps: 0
32
+
33
+ # Augmentation Probabilities
34
+ rotate90: 1.0
35
+ horizontal_flip: 0.5
36
+ brightness_contrast: 0.4
37
+
38
+ # Elastic Transform Parameters
39
+ elastic_transform: 0.5
40
+ elastic_alpha: 100.0
41
+ elastic_sigma: 5.0
42
+
43
+ # Evaluation & Saving
44
+ eval_strategy: "epoch" # Options: no, steps, epoch
45
+ save_strategy: "epoch" # Options: no, steps, epoch
46
+
47
+ # Early Stopping
48
+ early_stopping_patience: 10
49
+
object_detector_benchmark/transformer_benchmark/Configs/facebook_detr.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_path: "../8_calves_arrow"
2
+ save_directory: "runs"
3
+
4
+ model_name: "facebook/detr-resnet-50"
5
+
6
+ # Training Hyperparameters
7
+ num_train_epochs: 100
8
+
9
+ # Learning Rates
10
+ learning_rates:
11
+ model: 1e-5
12
+ class_labels_classifier: 1e-4
13
+ bbox_predictor: 1e-4
14
+
15
+ # Scheduler Type
16
+
17
+ lr_scheduler_type: "constant_with_warmup"
18
+
19
+ # Weight Decay
20
+ weight_decay: 1e-4 # or just set 0
21
+
22
+ # Batch Sizes
23
+ train_batch_size: 5
24
+ eval_batch_size: 25
25
+ dataloader_num_workers: 8
26
+
27
+ # Gradient Clipping
28
+ max_grad_norm: 0.1
29
+
30
+ # Warm up
31
+ warmup_steps: 0
32
+
33
+ # Augmentation Probabilities
34
+ rotate90: 1.0
35
+ horizontal_flip: 0.5
36
+ brightness_contrast: 0.4
37
+
38
+ # Elastic Transform Parameters
39
+ elastic_transform: 0.5
40
+ elastic_alpha: 100.0
41
+ elastic_sigma: 5.0
42
+
43
+ # Evaluation & Saving
44
+ eval_strategy: "epoch" # Options: no, steps, epoch
45
+ save_strategy: "epoch" # Options: no, steps, epoch
46
+
47
+ # Early Stopping
48
+ early_stopping_patience: 10
49
+
object_detector_benchmark/transformer_benchmark/Configs/yolos.yaml ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ dataset_path: "../8_calves_arrow"
2
+ save_directory: "runs"
3
+
4
+ model_name: "hustvl/yolos-small"
5
+
6
+ # Training Hyperparameters
7
+ num_train_epochs: 100
8
+
9
+ # Learning Rates
10
+ learning_rates:
11
+ vit: 2.5e-5
12
+ class_labels_classifier: 2.5e-5
13
+ bbox_predictor: 2.5e-5
14
+
15
+ # Scheduler Type
16
+
17
+ lr_scheduler_type: "cosine"
18
+
19
+ # Weight Decay
20
+ weight_decay: 1e-4 # or just set 0
21
+
22
+ # Batch Sizes
23
+ train_batch_size: 5
24
+ eval_batch_size: 25
25
+ dataloader_num_workers: 8
26
+
27
+ # Gradient Clipping
28
+ max_grad_norm: 0.0
29
+
30
+ # Warm up
31
+ warmup_steps: 0
32
+
33
+ # Augmentation Probabilities
34
+ rotate90: 1.0
35
+ horizontal_flip: 0.5
36
+ brightness_contrast: 0.4
37
+
38
+ # Elastic Transform Parameters
39
+ elastic_transform: 0.5
40
+ elastic_alpha: 100.0
41
+ elastic_sigma: 5.0
42
+
43
+ # Evaluation & Saving
44
+ eval_strategy: "epoch" # Options: no, steps, epoch
45
+ save_strategy: "epoch" # Options: no, steps, epoch
46
+
47
+ # Early Stopping
48
+ early_stopping_patience: 10
49
+
object_detector_benchmark/transformer_benchmark/augmentations.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_from_disk
2
+ import albumentations as A
3
+ import numpy as np
4
+ from collections import defaultdict
5
+ import os
6
+ from PIL import Image, ImageDraw
7
+ from functools import partial
8
+ from custom_parser import parse_args
9
+
10
+
11
+ # augmentation probabilities need to be hyperparameters
12
+ def augment_data_point(batch, args):
13
+ assert len(batch["image_id"]) == len(batch["image"]) == len(batch["annotations"])
14
+ transform = A.Compose([
15
+ A.RandomRotate90(p=args.rotate90),
16
+ A.HorizontalFlip(p=args.horizontal_flip),
17
+ A.RandomBrightnessContrast(p=args.brightness_contrast),
18
+ A.ElasticTransform(
19
+ alpha=args.elastic_alpha,
20
+ sigma=args.elastic_sigma,
21
+ p=args.elastic_transform
22
+ ),
23
+ A.Resize(640, 640)
24
+ ], bbox_params=A.BboxParams(
25
+ format="coco",
26
+ label_fields=["category_ids"],
27
+ ))
28
+
29
+ new_batch = defaultdict(list)
30
+ for id, image, annotations in zip(batch["image_id"], batch["image"], batch["annotations"]):
31
+ image_np = np.array(image)
32
+ bboxes = [ann["bbox"] for ann in annotations]
33
+ category_ids = [ann["category_id"] for ann in annotations]
34
+
35
+ transformed = transform(image=image_np, bboxes=bboxes, category_ids=category_ids)
36
+ transformed_image = Image.fromarray(transformed["image"])
37
+
38
+ transformed_annotations = []
39
+ for ann, new_bbox in zip(annotations, transformed["bboxes"]):
40
+ new_ann = ann.copy()
41
+ new_ann["bbox"] = new_bbox
42
+ transformed_annotations.append(new_ann)
43
+ new_batch["image_id"].append(id)
44
+ new_batch["image"].append(transformed_image)
45
+ new_batch["annotations"].append(transformed_annotations)
46
+
47
+ return new_batch
48
+
49
+
50
+
51
+ def validation_transform(batch):
52
+ assert len(batch["image_id"]) == len(batch["image"]) == len(batch["annotations"])
53
+ transform = A.Compose([
54
+ A.Resize(640, 640)
55
+ ], bbox_params=A.BboxParams(
56
+ format="coco",
57
+ label_fields=["category_ids"],
58
+ ))
59
+
60
+ new_batch = defaultdict(list)
61
+ for id, image, annotations in zip(batch["image_id"], batch["image"], batch["annotations"]):
62
+ image_np = np.array(image)
63
+ bboxes = [ann["bbox"] for ann in annotations]
64
+ category_ids = [ann["category_id"] for ann in annotations]
65
+
66
+ transformed = transform(image=image_np, bboxes=bboxes, category_ids=category_ids)
67
+ transformed_image = Image.fromarray(transformed["image"])
68
+
69
+ transformed_annotations = []
70
+ for ann, new_bbox in zip(annotations, transformed["bboxes"]):
71
+ new_ann = ann.copy()
72
+ new_ann["bbox"] = new_bbox
73
+ transformed_annotations.append(new_ann)
74
+ new_batch["image_id"].append(id)
75
+ new_batch["image"].append(transformed_image)
76
+ new_batch["annotations"].append(transformed_annotations)
77
+
78
+ return new_batch
79
+
80
+
81
+ def save_sample(dataset, idx, filename, save_dir="augmented_samples"):
82
+ os.makedirs(save_dir, exist_ok=True)
83
+ sample = dataset[idx] # Fetch sample (augmented or original)
84
+ image = sample["image"]
85
+ bboxes = [ann["bbox"] for ann in sample["annotations"]]
86
+
87
+ # Convert image to RGB (if not already)
88
+ image = image.convert("RGB")
89
+
90
+ # Draw bounding boxes
91
+ draw = ImageDraw.Draw(image)
92
+ for bbox in bboxes:
93
+ x, y, w, h = bbox
94
+ draw.rectangle([x, y, x + w, y + h], outline="red", width=3)
95
+
96
+ # Save the image
97
+ image_path = os.path.join(save_dir, filename)
98
+ image.save(image_path)
99
+
100
+
101
+
102
+ def main():
103
+ args = parse_args()
104
+ dataset = load_from_disk(args.dataset_path)
105
+
106
+ train_dataset = dataset["train"]
107
+ augmented_train_dataset = train_dataset.with_transform(lambda batch: augment_data_point(batch, args))
108
+ valid_dataset = dataset["val"].with_transform(validation_transform)
109
+ # print(train_dataset[0])
110
+ for i in range(5): # Adjust index as needed
111
+ save_sample(augmented_train_dataset, i, f"augmented_sample_{i}.png")
112
+ save_sample(train_dataset, i, f"original_sample_{i}.png")
113
+ save_sample(valid_dataset, i, f"validation_image_{i}.png")
114
+
115
+
116
+ if __name__ == "__main__":
117
+ main()
object_detector_benchmark/transformer_benchmark/custom_parser.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+ import argparse
3
+ from argparse import Namespace
4
+ from ultralytics.utils import IterableSimpleNamespace
5
+
6
+
7
+ # Function to Load Configurations from YAML
8
+ def load_config(config_path):
9
+ with open(config_path, "r") as file:
10
+ config_dict = yaml.safe_load(file)
11
+
12
+ # Convert specific keys to float/int to prevent type errors
13
+ config_dict["weight_decay"] = float(config_dict["weight_decay"])
14
+ config_dict["warmup_steps"] = int(config_dict["warmup_steps"])
15
+
16
+ config_dict["rotate90"] = float(config_dict["rotate90"])
17
+ config_dict["horizontal_flip"] = float(config_dict["horizontal_flip"])
18
+ config_dict["brightness_contrast"] = float(config_dict["brightness_contrast"])
19
+ config_dict["elastic_transform"] = float(config_dict["elastic_transform"])
20
+ config_dict["elastic_alpha"] = float(config_dict["elastic_alpha"])
21
+ config_dict["elastic_sigma"] = float(config_dict["elastic_sigma"])
22
+ return IterableSimpleNamespace(**config_dict)
23
+
24
+ def parse_args():
25
+ parser = argparse.ArgumentParser(description="Custom Hugging Face Training with config file")
26
+
27
+ parser.add_argument("--config", type=str, required=True, help="Path to YAML config file")
28
+
29
+ args = parser.parse_args()
30
+
31
+ # Load settings from the YAML file
32
+ config = load_config(args.config)
33
+ return config
34
+
35
+
36
+ if __name__ == "__main__":
37
+ main()
object_detector_benchmark/transformer_benchmark/train.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datasets import load_from_disk
2
+ from transformers import (
3
+ AutoModelForObjectDetection,
4
+ AutoImageProcessor,
5
+ Trainer,
6
+ TrainingArguments,
7
+ EarlyStoppingCallback,
8
+ )
9
+ import torch
10
+ import numpy as np
11
+ from torchmetrics.detection.mean_ap import MeanAveragePrecision
12
+ from functools import partial
13
+ from augmentations import augment_data_point, validation_transform
14
+ from pprint import pprint
15
+ from custom_parser import parse_args
16
+ from torch.optim import AdamW
17
+ import os
18
+ import torchvision.transforms as transforms
19
+ from copy import deepcopy
20
+ import time
21
+ # from ultralytics.utils.plotting import Annotator
22
+ from PIL import Image, ImageDraw
23
+
24
+ # this is still bugged!!!
25
+ # I guess time to parallelise this and see if there are more bugs, currently seems fine
26
+ # just dropping the last incomplete batch
27
+ # check how many bounding boxes there are for each image, if they all equal to 8,
28
+ # can just add assertions
29
+ @torch.no_grad()
30
+ def compute_metrics(results):
31
+ assert len(results.predictions) == len(results.label_ids)
32
+ # pack up predictions
33
+ prediction_list = []
34
+ for batch in results.predictions:
35
+ logits = batch[1] # shape: (number of samples, number of predictions for each sample, number of classes)
36
+ scores = torch.softmax(torch.tensor(logits), dim=-1)
37
+ confidences, labels = scores.max(dim=-1)
38
+ boxes = batch[2]
39
+
40
+ for boxes_per_image, confidences_per_image, labels_per_image in zip(boxes, confidences, labels):
41
+ boxes_tensor = torch.tensor(boxes_per_image)
42
+ sorted_indices = torch.argsort(confidences_per_image, descending=True)
43
+ keep = sorted_indices[:100]
44
+ boxes_top = boxes_tensor[keep]
45
+ scores_top = confidences_per_image[keep]
46
+ labels_top = labels_per_image[keep]
47
+ prediction_list.append({
48
+ 'boxes': boxes_top,
49
+ 'scores': scores_top,
50
+ 'labels': labels_top,
51
+ })
52
+ # pack up targets
53
+ target_list = []
54
+ for batch in results.label_ids:
55
+ for target in batch:
56
+ target_list.append(
57
+ {
58
+ 'labels' : torch.tensor(target['class_labels']),
59
+ 'boxes' : torch.tensor(target['boxes']),
60
+ 'area' : torch.tensor(target['area']),
61
+ 'iscrowd' : torch.tensor(target['iscrowd']),
62
+ }
63
+ )
64
+
65
+ assert len(prediction_list) == len(target_list)
66
+ for target in target_list:
67
+ assert len(target['boxes']) == len(target['labels']) == len(target['area']) == len(target['iscrowd']) > 2
68
+
69
+
70
+ # compute metrics
71
+ metric = MeanAveragePrecision(box_format='cxcywh')
72
+ metric.update(prediction_list, target_list)
73
+ metrics = metric.compute()
74
+ # for key in metrics.keys():
75
+ # print(key, type(metrics[key]))
76
+ # print("map_small", type(metric["map_small"]), print(metric["map_small"]))
77
+ return {
78
+ "map" : metrics["map"].item(),
79
+ "map_50" : metrics["map_50"].item(),
80
+ "map_75" : metrics["map_75"].item(),
81
+ }
82
+
83
+
84
+ # Do not delete the plots!!! Need to do it for every detector!!!
85
+ def collate_fn(batch, image_processor):
86
+ images = [sample["image"] for sample in batch]
87
+ # for image in images:
88
+ # image.save(f"original_{time.time()}.jpg")
89
+ image_ids = [sample["image_id"] for sample in batch]
90
+ formatted_annotations = [{"image_id": sample["image_id"], "annotations": sample["annotations"]} for sample in batch]
91
+
92
+ inputs = image_processor(images=images, annotations=formatted_annotations, return_tensors="pt")
93
+ # mean = [0.485, 0.456, 0.406] # Example: ImageNet Mean
94
+ # std = [0.229, 0.224, 0.225] # Example: ImageNet Std
95
+ # transform = transforms.Compose([
96
+ # # transforms.Normalize(mean=[-m/s for m, s in zip(mean, std)], std=[1/s for s in std]), # Undo standardization
97
+ # transforms.ToPILImage()
98
+ # ])
99
+ # for pixel_values, labels in zip(inputs.pixel_values, inputs.labels):
100
+ # img_width, img_height = labels['size'].tolist()
101
+ # print(pixel_values.size(), labels['size'])
102
+ # bboxes = labels['boxes']
103
+ # image_cpy = deepcopy(pixel_values)
104
+ # image_cpy = transform(image_cpy)
105
+ # draw = ImageDraw.Draw(image_cpy)
106
+
107
+ # for box in bboxes:
108
+ # x_center, y_center, width, height = box.tolist()
109
+ # x0 = (x_center - width/2) * img_width
110
+ # y0 = (y_center - height/2) * img_height
111
+ # x1 = (x_center + width/2) * img_width
112
+ # y1 = (y_center + height/2) * img_height
113
+ # draw.rectangle([x0, y0, x1, y1], outline="green", width=1)
114
+ # image_cpy.save(f"{time.time()}.jpg")
115
+ return inputs
116
+
117
+ def get_param_groups(model, args):
118
+ model_modules = dict(model.named_children())
119
+ invalid_keys = [key for key in args.learning_rates if key not in model_modules]
120
+ if invalid_keys:
121
+ raise ValueError(f"Invalid keys in learning_rates: {invalid_keys}. "
122
+ f"These are not valid model components. Valid options: {list(model_modules.keys())}")
123
+ param_groups = []
124
+ for name, lr in args.learning_rates.items():
125
+ if args.model_name == "PekingU/rtdetr_v2_r50vd" and name == "model":
126
+ param_groups.append(
127
+ {
128
+ "params": model_modules[name].backbone.parameters(),
129
+ "lr": float(lr)
130
+ }
131
+ )
132
+ else:
133
+ param_groups.append(
134
+ {
135
+ "params": model_modules[name].parameters(),
136
+ "lr": float(lr)
137
+ }
138
+ )
139
+ return param_groups
140
+
141
+ # pick out the hyperparameters and have a save directory
142
+ def main():
143
+ args = parse_args()
144
+ print(args)
145
+ dataset = load_from_disk(args.dataset_path)
146
+ train_subset = dataset['train'].with_transform(lambda batch: augment_data_point(batch, args))
147
+ val_subset = dataset['val'].with_transform(validation_transform)
148
+ test_subset = dataset['test'].with_transform(validation_transform)
149
+ dataset = {
150
+ "train": train_subset,
151
+ "validation": val_subset,
152
+ "test" : test_subset
153
+ }
154
+
155
+ if args.model_name in ["SenseTime/deformable-detr", "PekingU/rtdetr_v2_r50vd", "microsoft/conditional-detr-resnet-50"]:
156
+ num_labels = 2
157
+ else:
158
+ num_labels = 1
159
+ model = AutoModelForObjectDetection.from_pretrained(
160
+ args.model_name,
161
+ num_labels=num_labels,
162
+ ignore_mismatched_sizes=True
163
+ )
164
+
165
+ processor = AutoImageProcessor.from_pretrained(
166
+ args.model_name,
167
+ do_normalize=False
168
+ )
169
+
170
+ device = "cuda" if torch.cuda.is_available() else "cpu"
171
+ model.to(device)
172
+
173
+ param_groups = get_param_groups(model, args)
174
+ optimizer = AdamW(param_groups, weight_decay=args.weight_decay)
175
+
176
+ # Training arguments
177
+ # eventually set these to the same as ultralytics !!!!
178
+ # evaluation always goes through the entire validation dataset
179
+ training_args = TrainingArguments(
180
+ output_dir=f"./{args.save_directory}/{os.environ.get('SLURM_JOB_ID')}",
181
+ num_train_epochs=args.num_train_epochs,
182
+ max_grad_norm=args.max_grad_norm,
183
+ per_device_train_batch_size=args.train_batch_size,
184
+ per_device_eval_batch_size=args.eval_batch_size,
185
+ dataloader_num_workers=args.dataloader_num_workers,
186
+ eval_strategy=args.eval_strategy,
187
+ save_strategy=args.save_strategy,
188
+ save_total_limit=2,
189
+ metric_for_best_model="eval_map",
190
+ greater_is_better=True,
191
+ load_best_model_at_end=True,
192
+ eval_do_concat_batches=False,
193
+ remove_unused_columns=False,
194
+ dataloader_drop_last=True,
195
+ lr_scheduler_type=args.lr_scheduler_type,
196
+ warmup_steps=args.warmup_steps,
197
+ eval_accumulation_steps=10
198
+ )
199
+
200
+ print(training_args)
201
+ # Trainer
202
+ trainer = Trainer(
203
+ model=model,
204
+ args=training_args,
205
+ train_dataset=dataset["train"],
206
+ eval_dataset=dataset["validation"],
207
+ data_collator=partial(collate_fn, image_processor=processor),
208
+ compute_metrics=compute_metrics,
209
+ callbacks=[
210
+ EarlyStoppingCallback(
211
+ early_stopping_patience=args.early_stopping_patience
212
+ ),
213
+ ],
214
+ optimizers=(optimizer, None)
215
+ )
216
+
217
+ # Train
218
+ trainer.train()
219
+ model.save_pretrained(f"./{args.save_directory}/{os.environ.get('SLURM_JOB_ID')}/best_model")
220
+ processor.save_pretrained(f"./{args.save_directory}/{os.environ.get('SLURM_JOB_ID')}/best_model")
221
+ metrics = trainer.evaluate()
222
+ pprint(metrics)
223
+ print("test results")
224
+ print(f"test dataset length: {len(dataset['test'])}")
225
+ metrics = trainer.evaluate(dataset["test"])
226
+ pprint(metrics)
227
+
228
+ if __name__ == "__main__":
229
+ main()
object_detector_benchmark/yolo_to_coco.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from PIL import Image
4
+ import multiprocessing
5
+ from tqdm import tqdm
6
+
7
+ # Configuration
8
+ YOLO_DIR = "8_calves_yolo"
9
+ COCO_DIR = "8_calves_coco"
10
+ CATEGORIES = [{"id": 1, "name": "cow"}]
11
+ NUM_WORKERS = multiprocessing.cpu_count() # Use all available cores
12
+
13
+ def process_image(args):
14
+ image_path, label_path, image_id = args
15
+ try:
16
+ with Image.open(image_path) as img:
17
+ width, height = img.size
18
+ except Exception as e:
19
+ print(f"Error opening {image_path}: {e}")
20
+ return None, []
21
+
22
+ image_info = {
23
+ "id": image_id,
24
+ "file_name": os.path.relpath(image_path, COCO_DIR),
25
+ "width": width,
26
+ "height": height,
27
+ }
28
+
29
+ annotations = []
30
+ if os.path.exists(label_path):
31
+ try:
32
+ with open(label_path, "r") as f:
33
+ lines = f.readlines()
34
+ except Exception as e:
35
+ print(f"Error reading {label_path}: {e}")
36
+ return image_info, []
37
+
38
+ for line in lines:
39
+ parts = line.strip().split()
40
+ if len(parts) != 5:
41
+ continue
42
+
43
+ try:
44
+ class_id = int(parts[0])
45
+ x_center, y_center = float(parts[1]), float(parts[2])
46
+ w, h = float(parts[3]), float(parts[4])
47
+ except:
48
+ print(f"Error parsing line in {label_path}: {line}")
49
+ continue
50
+
51
+ if class_id != 0:
52
+ continue
53
+
54
+ # Convert YOLO to COCO bbox with boundary checks
55
+ w_abs = w * width
56
+ h_abs = h * height
57
+ x_min = max(0, (x_center * width) - w_abs/2)
58
+ y_min = max(0, (y_center * height) - h_abs/2)
59
+ w_abs = min(width - x_min, w_abs)
60
+ h_abs = min(height - y_min, h_abs)
61
+
62
+ annotations.append({
63
+ "image_id": image_id,
64
+ "category_id": 1,
65
+ "bbox": [x_min, y_min, w_abs, h_abs],
66
+ "area": w_abs * h_abs,
67
+ "iscrowd": 0,
68
+ })
69
+
70
+ return image_info, annotations
71
+
72
+ def process_split(split):
73
+ split_dir = os.path.join(YOLO_DIR, split)
74
+ image_dir = os.path.join(split_dir, "images")
75
+ label_dir = os.path.join(split_dir, "labels")
76
+
77
+ if not os.path.exists(image_dir):
78
+ print(f"Skipping {split} - no image directory")
79
+ return
80
+
81
+ # Get sorted list of image files
82
+ image_files = sorted([
83
+ f for f in os.listdir(image_dir)
84
+ if f.lower().endswith(".png")
85
+ ])
86
+
87
+ # Prepare arguments for parallel processing
88
+ tasks = []
89
+ for idx, image_file in enumerate(image_files, 1):
90
+ image_path = os.path.join(image_dir, image_file)
91
+ label_path = os.path.join(label_dir, os.path.splitext(image_file)[0] + ".txt")
92
+ tasks.append((image_path, label_path, idx))
93
+
94
+ # Process images in parallel
95
+ results = []
96
+ with multiprocessing.Pool(processes=NUM_WORKERS) as pool:
97
+ for result in tqdm(pool.imap(process_image, tasks),
98
+ total=len(tasks),
99
+ desc=f"Processing {split}"):
100
+ results.append(result)
101
+
102
+ # Collect results
103
+ images = []
104
+ annotations = []
105
+ annotation_id = 1
106
+
107
+ for image_info, image_anns in results:
108
+ if image_info is None:
109
+ continue
110
+
111
+ images.append(image_info)
112
+ for ann in image_anns:
113
+ ann["id"] = annotation_id
114
+ annotations.append(ann)
115
+ annotation_id += 1
116
+
117
+ # Create COCO format
118
+ coco_data = {
119
+ "info": {
120
+ "description": "COCO Dataset converted from YOLO format",
121
+ "version": "1.0",
122
+ "year": 2023,
123
+ "contributor": "",
124
+ },
125
+ "licenses": [],
126
+ "categories": CATEGORIES,
127
+ "images": images,
128
+ "annotations": annotations,
129
+ }
130
+
131
+ # Save to JSON
132
+ output_path = os.path.join(COCO_DIR, f"{split}.json")
133
+ with open(output_path, "w") as f:
134
+ json.dump(coco_data, f, indent=2)
135
+
136
+ print(f"Saved {split} with {len(images)} images and {len(annotations)} annotations")
137
+
138
+ def main():
139
+ os.makedirs(COCO_DIR, exist_ok=True)
140
+ for split in ["train", "val", "test"]:
141
+ process_split(split)
142
+
143
+ if __name__ == "__main__":
144
+ main()