Tony Fang
added transformer_benchmark
d67ed13
raw
history blame contribute delete
4.24 kB
import os
import json
from PIL import Image
import multiprocessing
from tqdm import tqdm
# Configuration
YOLO_DIR = "8_calves_yolo"
COCO_DIR = "8_calves_coco"
CATEGORIES = [{"id": 1, "name": "cow"}]
NUM_WORKERS = multiprocessing.cpu_count() # Use all available cores
def process_image(args):
image_path, label_path, image_id = args
try:
with Image.open(image_path) as img:
width, height = img.size
except Exception as e:
print(f"Error opening {image_path}: {e}")
return None, []
image_info = {
"id": image_id,
"file_name": os.path.relpath(image_path, COCO_DIR),
"width": width,
"height": height,
}
annotations = []
if os.path.exists(label_path):
try:
with open(label_path, "r") as f:
lines = f.readlines()
except Exception as e:
print(f"Error reading {label_path}: {e}")
return image_info, []
for line in lines:
parts = line.strip().split()
if len(parts) != 5:
continue
try:
class_id = int(parts[0])
x_center, y_center = float(parts[1]), float(parts[2])
w, h = float(parts[3]), float(parts[4])
except:
print(f"Error parsing line in {label_path}: {line}")
continue
if class_id != 0:
continue
# Convert YOLO to COCO bbox with boundary checks
w_abs = w * width
h_abs = h * height
x_min = max(0, (x_center * width) - w_abs/2)
y_min = max(0, (y_center * height) - h_abs/2)
w_abs = min(width - x_min, w_abs)
h_abs = min(height - y_min, h_abs)
annotations.append({
"image_id": image_id,
"category_id": 1,
"bbox": [x_min, y_min, w_abs, h_abs],
"area": w_abs * h_abs,
"iscrowd": 0,
})
return image_info, annotations
def process_split(split):
split_dir = os.path.join(YOLO_DIR, split)
image_dir = os.path.join(split_dir, "images")
label_dir = os.path.join(split_dir, "labels")
if not os.path.exists(image_dir):
print(f"Skipping {split} - no image directory")
return
# Get sorted list of image files
image_files = sorted([
f for f in os.listdir(image_dir)
if f.lower().endswith(".png")
])
# Prepare arguments for parallel processing
tasks = []
for idx, image_file in enumerate(image_files, 1):
image_path = os.path.join(image_dir, image_file)
label_path = os.path.join(label_dir, os.path.splitext(image_file)[0] + ".txt")
tasks.append((image_path, label_path, idx))
# Process images in parallel
results = []
with multiprocessing.Pool(processes=NUM_WORKERS) as pool:
for result in tqdm(pool.imap(process_image, tasks),
total=len(tasks),
desc=f"Processing {split}"):
results.append(result)
# Collect results
images = []
annotations = []
annotation_id = 1
for image_info, image_anns in results:
if image_info is None:
continue
images.append(image_info)
for ann in image_anns:
ann["id"] = annotation_id
annotations.append(ann)
annotation_id += 1
# Create COCO format
coco_data = {
"info": {
"description": "COCO Dataset converted from YOLO format",
"version": "1.0",
"year": 2023,
"contributor": "",
},
"licenses": [],
"categories": CATEGORIES,
"images": images,
"annotations": annotations,
}
# Save to JSON
output_path = os.path.join(COCO_DIR, f"{split}.json")
with open(output_path, "w") as f:
json.dump(coco_data, f, indent=2)
print(f"Saved {split} with {len(images)} images and {len(annotations)} annotations")
def main():
os.makedirs(COCO_DIR, exist_ok=True)
for split in ["train", "val", "test"]:
process_split(split)
if __name__ == "__main__":
main()