|
import os |
|
import json |
|
from PIL import Image |
|
import multiprocessing |
|
from tqdm import tqdm |
|
|
|
|
|
YOLO_DIR = "8_calves_yolo" |
|
COCO_DIR = "8_calves_coco" |
|
CATEGORIES = [{"id": 1, "name": "cow"}] |
|
NUM_WORKERS = multiprocessing.cpu_count() |
|
|
|
def process_image(args): |
|
image_path, label_path, image_id = args |
|
try: |
|
with Image.open(image_path) as img: |
|
width, height = img.size |
|
except Exception as e: |
|
print(f"Error opening {image_path}: {e}") |
|
return None, [] |
|
|
|
image_info = { |
|
"id": image_id, |
|
"file_name": os.path.relpath(image_path, COCO_DIR), |
|
"width": width, |
|
"height": height, |
|
} |
|
|
|
annotations = [] |
|
if os.path.exists(label_path): |
|
try: |
|
with open(label_path, "r") as f: |
|
lines = f.readlines() |
|
except Exception as e: |
|
print(f"Error reading {label_path}: {e}") |
|
return image_info, [] |
|
|
|
for line in lines: |
|
parts = line.strip().split() |
|
if len(parts) != 5: |
|
continue |
|
|
|
try: |
|
class_id = int(parts[0]) |
|
x_center, y_center = float(parts[1]), float(parts[2]) |
|
w, h = float(parts[3]), float(parts[4]) |
|
except: |
|
print(f"Error parsing line in {label_path}: {line}") |
|
continue |
|
|
|
if class_id != 0: |
|
continue |
|
|
|
|
|
w_abs = w * width |
|
h_abs = h * height |
|
x_min = max(0, (x_center * width) - w_abs/2) |
|
y_min = max(0, (y_center * height) - h_abs/2) |
|
w_abs = min(width - x_min, w_abs) |
|
h_abs = min(height - y_min, h_abs) |
|
|
|
annotations.append({ |
|
"image_id": image_id, |
|
"category_id": 1, |
|
"bbox": [x_min, y_min, w_abs, h_abs], |
|
"area": w_abs * h_abs, |
|
"iscrowd": 0, |
|
}) |
|
|
|
return image_info, annotations |
|
|
|
def process_split(split): |
|
split_dir = os.path.join(YOLO_DIR, split) |
|
image_dir = os.path.join(split_dir, "images") |
|
label_dir = os.path.join(split_dir, "labels") |
|
|
|
if not os.path.exists(image_dir): |
|
print(f"Skipping {split} - no image directory") |
|
return |
|
|
|
|
|
image_files = sorted([ |
|
f for f in os.listdir(image_dir) |
|
if f.lower().endswith(".png") |
|
]) |
|
|
|
|
|
tasks = [] |
|
for idx, image_file in enumerate(image_files, 1): |
|
image_path = os.path.join(image_dir, image_file) |
|
label_path = os.path.join(label_dir, os.path.splitext(image_file)[0] + ".txt") |
|
tasks.append((image_path, label_path, idx)) |
|
|
|
|
|
results = [] |
|
with multiprocessing.Pool(processes=NUM_WORKERS) as pool: |
|
for result in tqdm(pool.imap(process_image, tasks), |
|
total=len(tasks), |
|
desc=f"Processing {split}"): |
|
results.append(result) |
|
|
|
|
|
images = [] |
|
annotations = [] |
|
annotation_id = 1 |
|
|
|
for image_info, image_anns in results: |
|
if image_info is None: |
|
continue |
|
|
|
images.append(image_info) |
|
for ann in image_anns: |
|
ann["id"] = annotation_id |
|
annotations.append(ann) |
|
annotation_id += 1 |
|
|
|
|
|
coco_data = { |
|
"info": { |
|
"description": "COCO Dataset converted from YOLO format", |
|
"version": "1.0", |
|
"year": 2023, |
|
"contributor": "", |
|
}, |
|
"licenses": [], |
|
"categories": CATEGORIES, |
|
"images": images, |
|
"annotations": annotations, |
|
} |
|
|
|
|
|
output_path = os.path.join(COCO_DIR, f"{split}.json") |
|
with open(output_path, "w") as f: |
|
json.dump(coco_data, f, indent=2) |
|
|
|
print(f"Saved {split} with {len(images)} images and {len(annotations)} annotations") |
|
|
|
def main(): |
|
os.makedirs(COCO_DIR, exist_ok=True) |
|
for split in ["train", "val", "test"]: |
|
process_split(split) |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|