Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
vgaraujov commited on
Commit
56d563a
·
verified ·
1 Parent(s): 7825e1d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - am
4
+ - ar
5
+ - de
6
+ - en
7
+ - es
8
+ - ha
9
+ - pt
10
+ - ro
11
+ - ru
12
+ - uk
13
+ - zh
14
+ license: cc-by-4.0
15
+ ---
16
+
17
+ # SemEval 2025 Task 11 - Track B Dataset
18
+
19
+ This dataset contains the data for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection - Track B, organized as language-specific configurations.
20
+
21
+ ## Dataset Description
22
+
23
+ The dataset is a multi-language, multi-label emotion classification dataset with separate configurations for each language.
24
+
25
+ - **Total languages**: 11 standard ISO codes
26
+ - **Total examples**: 47111
27
+ - **Splits**: train, dev, test
28
+
29
+ ## Track Information
30
+
31
+ Track B has fewer languages than Track A, and it may have missing languages in certain splits. Specifically, 'ron' (Romanian) is missing from the train split but is present in dev and test splits.
32
+
33
+ ## Language Configurations
34
+
35
+ Each language is available as a separate configuration with the following statistics:
36
+
37
+ | ISO Code | Original Code(s) | Train Examples | Dev Examples | Test Examples | Total |
38
+ |----------|------------------|---------------|-------------|--------------|-------|
39
+ | am | amh | 3549 | 592 | 1774 | 5915 |
40
+ | ar | arq | 901 | 100 | 902 | 1903 |
41
+ | de | deu | 2603 | 200 | 2604 | 5407 |
42
+ | en | eng | 2768 | 116 | 2767 | 5651 |
43
+ | es | esp | 1996 | 184 | 1695 | 3875 |
44
+ | ha | hau | 2145 | 356 | 1080 | 3581 |
45
+ | pt | ptbr | 2226 | 200 | 2226 | 4652 |
46
+ | ro | ron | 1239 | 123 | 1119 | 2481 |
47
+ | ru | rus | 2220 | 343 | 650 | 3213 |
48
+ | uk | ukr | 2466 | 249 | 2234 | 4949 |
49
+ | zh | chn | 2642 | 200 | 2642 | 5484 |
50
+
51
+ ## Features
52
+
53
+ - **id**: Unique identifier for each example
54
+ - **text**: Text content to classify
55
+ - **anger**, **disgust**, **fear**, **joy**, **sadness**, **surprise**: Presence of emotion
56
+ - **emotions**: List of emotions present in the text
57
+
58
+ ## Usage
59
+
60
+ ```python
61
+ from datasets import load_dataset
62
+
63
+ # Load all data for a specific language
64
+ eng_dataset = load_dataset("YOUR_USERNAME/semeval-2025-task11-track-b", "eng")
65
+
66
+ # Or load a specific split for a language
67
+ eng_train = load_dataset("YOUR_USERNAME/semeval-2025-task11-track-b", "eng", split="train")
68
+ ```
69
+
70
+ ## Citation
71
+
72
+ If you use this dataset, please cite the following papers:
73
+
74
+ ```
75
+ @misc{{muhammad2025brighterbridginggaphumanannotated,
76
+ title={{BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages}},
77
+ author={{Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad}},
78
+ year={{2025}},
79
+ eprint={{2502.11926}},
80
+ archivePrefix={{arXiv}},
81
+ primaryClass={{cs.CL}},
82
+ url={{https://arxiv.org/abs/2502.11926}},
83
+ }}
84
+ ```
85
+
86
+ ```
87
+ @misc{{muhammad2025semeval2025task11bridging,
88
+ title={{SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection}},
89
+ author={{Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad}},
90
+ year={{2025}},
91
+ eprint={{2503.07269}},
92
+ archivePrefix={{arXiv}},
93
+ primaryClass={{cs.CL}},
94
+ url={{https://arxiv.org/abs/2503.07269}},
95
+ }}
96
+ ```
97
+
98
+ ## License
99
+ This dataset is licensed under CC-BY 4.0.