Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

Vineyard Logits Sigmoid Dataset πŸ‡

πŸ“Œ Overview

The dataset_vineyardLogits_sigmoid is a collection of logits and labels used for training and testing deep learning models in precision agriculture.

πŸ’‘ Key Details:

  • Binary classification task with one class.
  • Sigmoid activation function used to output probabilities.
  • Optimized for distinguishing vine plants from background elements.

This dataset provides valuable logits from models trained on vineyard segmentation tasks, enabling further research and development in precision agriculture.


πŸ“Š Hyperparameters

The dataset consists of three distinct datasets used for binary classification. Below are the key hyperparameters used during training and testing:

  1. Split Ratio

    • The dataset is split 80:20 (80% training, 20% testing).
  2. Learning Rate

    • Initial learning rate: 0.001.
  3. Batch Sizes

    • Training batch size: 30
    • Testing batch size: 3
    • This ensures efficient model training and evaluation.

πŸ“‚ Dataset Structure

dataset_vineyardLogits_sigmoid
β”œβ”€β”€ deeplab_EARLY_FUSION_t1
β”œβ”€β”€ deeplab_EARLY_FUSION_t2
β”œβ”€β”€ deeplab_EARLY_FUSION_t3
β”œβ”€β”€ deeplab_GNDVI_t1
β”œβ”€β”€ deeplab_GNDVI_t2
β”œβ”€β”€ deeplab_GNDVI_t3
β”œβ”€β”€ deeplab_NDVI_t1
β”œβ”€β”€ deeplab_NDVI_t2
β”œβ”€β”€ deeplab_NDVI_t3
β”œβ”€β”€ deeplab_RGB_t1
β”œβ”€β”€ deeplab_RGB_t2
β”œβ”€β”€ deeplab_RGB_t3
β”œβ”€β”€ segnet_EARLY_FUSION_t1
β”œβ”€β”€ segnet_EARLY_FUSION_t2
β”œβ”€β”€ segnet_EARLY_FUSION_t3
β”œβ”€β”€ segnet_GNDVI_t1
β”œβ”€β”€ segnet_GNDVI_t2
β”œβ”€β”€ segnet_GNDVI_t3
β”œβ”€β”€ segnet_NDVI_t1
β”œβ”€β”€ segnet_NDVI_t2
β”œβ”€β”€ segnet_NDVI_t3
β”œβ”€β”€ segnet_RGB_t1
β”œβ”€β”€ segnet_RGB_t2
β”œβ”€β”€ segnet_RGB_t3
└── README.md

πŸ“‘ Contents

  • model_modality_fold_n/pred_masks_train: Logits from the training set.
  • model_modality_fold_n/pred_masks_test: Logits from the test set.

πŸ“Έ Data Description

  • Model Logits
    The dataset consists of logits generated by DeepLabV3 and SegNet during training and testing. These logits are unnormalized raw scores before applying the sigmoid activation function.

  • Original Images
    The images originate from aerial multispectral imagery collected from three vineyards in central Portugal:

    • Quinta de Baixo (QTA)
    • ESAC
    • Valdoeiro (VAL)

    βœ… Captured at 240x240 resolution using:

    • X7 RGB camera
    • MicaSense Altum multispectral sensor

    βœ… Includes RGB and Near-Infrared (NIR) bands, enabling vegetation indices like NDVI and GNDVI.
    βœ… Ground-truth annotations available for vineyard segmentation.

πŸ“Œ For more details, refer to the dataset:
Cybonic, "DL Vineyard Segmentation Study," v1.0, GitHub, 2024


πŸ“₯ How to Use

1️⃣ Load in Python

To load the dataset directly from Hugging Face:

from datasets import load_dataset
dataset = load_dataset("wilgomoreira/dataset_vineyardLogits_sigmoid")
print(dataset)

2️⃣ Download Specific Files

To download a specific file:

wget https://huggingface.co/datasets/seu-usuario/dataset_vineyardLogits_sigmoid/resolve/main/logits_train.npz

πŸ›  License

This dataset is released under the MIT License.
Please make sure to comply with the license terms when using this dataset.


πŸ™Œ Acknowledgments

This dataset was created by Wilgo Cardoso for research in precision agriculture and deep learning segmentation.


πŸ“§ Contact

For any questions or collaborations, please contact:
βœ‰οΈ [email protected]

Downloads last month
42