wav2vec2-xls-r-2b-faroese-100h-30-epochs_20250126

This model is a fine-tuned version of facebook/wav2vec2-xls-r-2b on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1114
  • Wer: 19.2228
  • Cer: 4.1352

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 5000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.0663 0.4877 1000 0.4799 54.6284 15.5160
0.5134 0.9754 2000 0.2491 33.6080 8.6429
0.4176 1.4628 3000 0.2075 31.1187 7.9399
0.3923 1.9505 4000 0.2237 31.8632 8.1789
0.3497 2.4379 5000 0.2379 33.6388 8.6421
0.3539 2.9256 6000 0.2181 31.1715 8.1561
0.3228 3.4131 7000 0.2242 31.8016 8.2728
0.295 3.9008 8000 0.2056 30.0656 7.6677
0.2754 4.3882 9000 0.1886 28.7527 7.3079
0.2802 4.8759 10000 0.1936 28.7527 7.3607
0.2589 5.3633 11000 0.1863 27.8627 7.0507
0.2335 5.8510 12000 0.1745 27.9464 7.1193
0.1956 6.3385 13000 0.1745 27.5235 6.7982
0.2026 6.8261 14000 0.1618 26.7657 6.7532
0.1986 7.3136 15000 0.1658 26.6599 6.5962
0.1901 7.8013 16000 0.1740 26.7040 6.5820
0.1621 8.2887 17000 0.1668 25.8933 6.3958
0.1651 8.7764 18000 0.1534 25.6245 6.2979
0.1315 9.2638 19000 0.1583 25.3514 6.2411
0.1545 9.7515 20000 0.1635 24.7830 6.1228
0.1361 10.2390 21000 0.1524 25.3470 6.2443
0.126 10.7267 22000 0.1495 24.6200 5.9516
0.1291 11.2141 23000 0.1419 24.0913 5.8892
0.1212 11.7018 24000 0.1390 23.7961 5.6667
0.1097 12.1892 25000 0.1435 24.1089 5.7030
0.1132 12.6769 26000 0.1391 23.8446 5.6494
0.0948 13.1644 27000 0.1537 23.5273 5.6210
0.0934 13.6520 28000 0.1445 23.1264 5.4876
0.0854 14.1395 29000 0.1333 22.6153 5.2343
0.0878 14.6272 30000 0.1315 22.6638 5.3787
0.0805 15.1146 31000 0.1304 22.4964 5.2075
0.074 15.6023 32000 0.1295 22.4303 5.1602
0.0734 16.0897 33000 0.1279 22.2937 5.1404
0.0692 16.5774 34000 0.1234 22.0602 5.0773
0.0623 17.0649 35000 0.1309 21.7914 5.0284
0.0693 17.5525 36000 0.1233 21.6328 4.9448
0.057 18.0400 37000 0.1225 21.5050 4.8935
0.0479 18.5277 38000 0.1238 21.3288 4.8722
0.0478 19.0151 39000 0.1285 21.2715 4.8406
0.0483 19.5028 40000 0.1228 20.9499 4.7191
0.0435 19.9905 41000 0.1217 20.7516 4.6489
0.052 20.4779 42000 0.1170 20.5269 4.5795
0.0436 20.9656 43000 0.1179 20.5137 4.5913
0.0388 21.4531 44000 0.1196 20.3639 4.5211
0.0464 21.9407 45000 0.1123 20.2009 4.4800
0.0321 22.4282 46000 0.1151 20.0819 4.4619
0.0354 22.9159 47000 0.1143 19.8881 4.3893
0.033 23.4033 48000 0.1104 20.0555 4.4145
0.0315 23.8910 49000 0.1113 19.8352 4.3096
0.0301 24.3784 50000 0.1149 19.7207 4.3104
0.0272 24.8661 51000 0.1141 19.4563 4.2236
0.0323 25.3536 52000 0.1155 19.5092 4.2441
0.032 25.8413 53000 0.1115 19.4211 4.2062
0.0282 26.3287 54000 0.1113 19.3109 4.1613
0.0257 26.8164 55000 0.1118 19.3197 4.1542
0.023 27.3038 56000 0.1121 19.2581 4.1463
0.0305 27.7915 57000 0.1122 19.1743 4.1384
0.0287 28.2790 58000 0.1123 19.1964 4.1337
0.0252 28.7666 59000 0.1121 19.2316 4.1344
0.0325 29.2541 60000 0.1115 19.2228 4.1376
0.0374 29.7418 61000 0.1114 19.2228 4.1352

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
2.16B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for davidilag/wav2vec2-xls-r-2b-faroese-100h-30-epochs_20250126

Finetuned
(5)
this model