metadata
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-MM_Classification_base_V10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8639652677279306
swin-base-patch4-window7-224-in22k-MM_Classification_base_V10
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3240
- Accuracy: 0.8640
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9254 | 0.9552 | 16 | 0.4842 | 0.8133 |
0.4552 | 1.9701 | 33 | 0.3855 | 0.8495 |
0.4034 | 2.9851 | 50 | 0.3452 | 0.8611 |
0.3583 | 4.0 | 67 | 0.3357 | 0.8582 |
0.353 | 4.9552 | 83 | 0.3281 | 0.8625 |
0.3387 | 5.9701 | 100 | 0.3240 | 0.8640 |
0.3157 | 6.6866 | 112 | 0.3253 | 0.8640 |
Framework versions
- Transformers 4.44.0
- Pytorch 1.13.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1