djbp's picture
End of training
4bd152b verified
|
raw
history blame
2.32 kB
metadata
license: apache-2.0
base_model: microsoft/swin-base-patch4-window7-224-in22k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-base-patch4-window7-224-in22k-MM_Classification_base_V10
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8639652677279306

swin-base-patch4-window7-224-in22k-MM_Classification_base_V10

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3240
  • Accuracy: 0.8640

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9254 0.9552 16 0.4842 0.8133
0.4552 1.9701 33 0.3855 0.8495
0.4034 2.9851 50 0.3452 0.8611
0.3583 4.0 67 0.3357 0.8582
0.353 4.9552 83 0.3281 0.8625
0.3387 5.9701 100 0.3240 0.8640
0.3157 6.6866 112 0.3253 0.8640

Framework versions

  • Transformers 4.44.0
  • Pytorch 1.13.1+cu117
  • Datasets 2.20.0
  • Tokenizers 0.19.1