|
--- |
|
license: other |
|
library_name: peft |
|
tags: |
|
- generated_from_trainer |
|
base_model: google/gemma-7b-it |
|
model-index: |
|
- name: out |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
```yaml |
|
# use google/gemma-7b if you have access |
|
base_model: google/gemma-7b-it |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
load_in_8bit: false |
|
load_in_4bit: true |
|
strict: false |
|
|
|
# huggingface repo |
|
datasets: |
|
- path: ./python-oasst/chunk_1.jsonl |
|
type: oasst |
|
val_set_size: 0.1 |
|
output_dir: ./out |
|
|
|
adapter: qlora |
|
lora_r: 32 |
|
lora_alpha: 16 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
pad_to_sequence_len: true |
|
|
|
wandb_project: gemma-7b-it |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_name: |
|
wandb_log_model: |
|
|
|
|
|
gradient_accumulation_steps: 6 |
|
micro_batch_size: 4 |
|
num_epochs: 4 |
|
optimizer: adamw_bnb_8bit |
|
lr_scheduler: cosine |
|
learning_rate: 0.0002 |
|
|
|
train_on_inputs: true |
|
group_by_length: false |
|
bf16: auto |
|
fp16: |
|
tf32: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_ratio: 0.1 |
|
evals_per_epoch: 4 |
|
eval_table_size: |
|
eval_max_new_tokens: 128 |
|
saves_per_epoch: 1 |
|
debug: |
|
deepspeed: deepspeed_configs/zero1.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# out |
|
|
|
This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1911 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 4 |
|
- gradient_accumulation_steps: 6 |
|
- total_train_batch_size: 96 |
|
- total_eval_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 9 |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 5.0474 | 0.01 | 1 | 5.9279 | |
|
| 1.2191 | 0.26 | 24 | 1.2947 | |
|
| 1.1165 | 0.51 | 48 | 1.1679 | |
|
| 1.0711 | 0.77 | 72 | 1.1377 | |
|
| 0.9546 | 1.02 | 96 | 1.1303 | |
|
| 0.9309 | 1.28 | 120 | 1.1298 | |
|
| 0.9588 | 1.54 | 144 | 1.1242 | |
|
| 0.8553 | 1.79 | 168 | 1.1259 | |
|
| 0.8231 | 2.05 | 192 | 1.1449 | |
|
| 0.8154 | 2.31 | 216 | 1.1514 | |
|
| 0.7354 | 2.56 | 240 | 1.1471 | |
|
| 0.7577 | 2.82 | 264 | 1.1479 | |
|
| 0.6647 | 3.07 | 288 | 1.1923 | |
|
| 0.6928 | 3.33 | 312 | 1.1856 | |
|
| 0.731 | 3.59 | 336 | 1.1890 | |
|
| 0.7193 | 3.84 | 360 | 1.1911 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.9.0 |
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.1.2+cu118 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.0 |