segformer-b0-finetuned-segments-sidewalk-2

This model is a fine-tuned version of pretrained_model_name on the segments/sidewalk-semantic dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.9118
  • eval_mean_iou: 0.1726
  • eval_mean_accuracy: 0.2154
  • eval_overall_accuracy: 0.7733
  • eval_accuracy_unlabeled: nan
  • eval_accuracy_flat-road: 0.8295
  • eval_accuracy_flat-sidewalk: 0.9526
  • eval_accuracy_flat-crosswalk: 0.0
  • eval_accuracy_flat-cyclinglane: 0.5332
  • eval_accuracy_flat-parkingdriveway: 0.0181
  • eval_accuracy_flat-railtrack: nan
  • eval_accuracy_flat-curb: 0.0398
  • eval_accuracy_human-person: 0.0
  • eval_accuracy_human-rider: 0.0
  • eval_accuracy_vehicle-car: 0.8847
  • eval_accuracy_vehicle-truck: 0.0
  • eval_accuracy_vehicle-bus: 0.0
  • eval_accuracy_vehicle-tramtrain: 0.0
  • eval_accuracy_vehicle-motorcycle: 0.0
  • eval_accuracy_vehicle-bicycle: 0.0
  • eval_accuracy_vehicle-caravan: 0.0
  • eval_accuracy_vehicle-cartrailer: 0.0
  • eval_accuracy_construction-building: 0.9105
  • eval_accuracy_construction-door: 0.0
  • eval_accuracy_construction-wall: 0.0135
  • eval_accuracy_construction-fenceguardrail: 0.0
  • eval_accuracy_construction-bridge: 0.0
  • eval_accuracy_construction-tunnel: nan
  • eval_accuracy_construction-stairs: 0.0
  • eval_accuracy_object-pole: 0.0
  • eval_accuracy_object-trafficsign: 0.0
  • eval_accuracy_object-trafficlight: 0.0
  • eval_accuracy_nature-vegetation: 0.9103
  • eval_accuracy_nature-terrain: 0.8654
  • eval_accuracy_sky: 0.9359
  • eval_accuracy_void-ground: 0.0
  • eval_accuracy_void-dynamic: 0.0
  • eval_accuracy_void-static: 0.0000
  • eval_accuracy_void-unclear: 0.0
  • eval_iou_unlabeled: nan
  • eval_iou_flat-road: 0.5508
  • eval_iou_flat-sidewalk: 0.7999
  • eval_iou_flat-crosswalk: 0.0
  • eval_iou_flat-cyclinglane: 0.4793
  • eval_iou_flat-parkingdriveway: 0.0178
  • eval_iou_flat-railtrack: nan
  • eval_iou_flat-curb: 0.0379
  • eval_iou_human-person: 0.0
  • eval_iou_human-rider: 0.0
  • eval_iou_vehicle-car: 0.6617
  • eval_iou_vehicle-truck: 0.0
  • eval_iou_vehicle-bus: 0.0
  • eval_iou_vehicle-tramtrain: 0.0
  • eval_iou_vehicle-motorcycle: 0.0
  • eval_iou_vehicle-bicycle: 0.0
  • eval_iou_vehicle-caravan: 0.0
  • eval_iou_vehicle-cartrailer: 0.0
  • eval_iou_construction-building: 0.6156
  • eval_iou_construction-door: 0.0
  • eval_iou_construction-wall: 0.0135
  • eval_iou_construction-fenceguardrail: 0.0
  • eval_iou_construction-bridge: 0.0
  • eval_iou_construction-tunnel: nan
  • eval_iou_construction-stairs: 0.0
  • eval_iou_object-pole: 0.0
  • eval_iou_object-trafficsign: 0.0
  • eval_iou_object-trafficlight: 0.0
  • eval_iou_nature-vegetation: 0.7728
  • eval_iou_nature-terrain: 0.7000
  • eval_iou_sky: 0.8753
  • eval_iou_void-ground: 0.0
  • eval_iou_void-dynamic: 0.0
  • eval_iou_void-static: 0.0000
  • eval_iou_void-unclear: 0.0
  • eval_runtime: 13.7353
  • eval_samples_per_second: 14.561
  • eval_steps_per_second: 7.28
  • epoch: 1.3
  • step: 520

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
216
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.