gpt2_zinc_87m / README.md
entropy's picture
Update README.md
f42a5a1
|
raw
history blame contribute delete
3.14 kB
---
license: mit
tags:
- chemistry
- molecule
- drug
---
# GPT2 Zinc 87m
This is a GPT2 style autoregressive language model trained on ~480m SMILES strings from the [ZINC database](https://zinc.docking.org/).
The model has ~87m parameters and was trained for 175000 iterations with a batch size of 3072 to a validation loss of ~.615. This model is useful for generating druglike molecules or generating embeddings from SMILES strings
## How to use
```python
from transformers import GPT2TokenizerFast, GPT2LMHeadModel
tokenizer = GPT2TokenizerFast.from_pretrained("entropy/gpt2_zinc_87m", max_len=256)
model = GPT2LMHeadModel.from_pretrained('entropy/gpt2_zinc_87m')
```
To generate molecules:
```python
inputs = torch.tensor([[tokenizer.bos_token_id]])
gen = model.generate(
inputs,
do_sample=True,
max_length=256,
temperature=1.,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
num_return_sequences=32
)
smiles = tokenizer.batch_decode(gen, skip_special_tokens=True)
```
To compute embeddings:
```python
from transformers import DataCollatorWithPadding
collator = DataCollatorWithPadding(tokenizer, padding=True, return_tensors='pt')
inputs = collator(tokenizer(smiles))
outputs = model(**inputs, output_hidden_states=True)
full_embeddings = outputs[-1][-1]
mask = inputs['attention_mask']
embeddings = ((full_embeddings * mask.unsqueeze(-1)).sum(1) / mask.sum(-1).unsqueeze(-1))
```
### WARNING
This model was trained with `bos` and `eos` tokens around SMILES inputs. The `GPT2TokenizerFast` tokenizer DOES NOT ADD special tokens,
even when `add_special_tokens=True`. Huggingface says this is [intended behavior](https://github.com/huggingface/transformers/issues/3311#issuecomment-693719190).
It may be necessary to manually add these tokens
```python
inputs = collator(tokenizer([tokenizer.bos_token+i+tokenizer.eos_token for i in smiles]))
```
## Model Performance
To test generation performance, 1m compounds were generated at various temperature values. Generated compounds were checked for uniqueness and structural validity.
* `percent_unique` denotes `n_unique_smiles/n_total_smiles`
* `percent_valid` denotes `n_valid_smiles/n_unique_smiles`
* `percent_unique_and_valid` denotes `n_valid_smiles/n_total_smiles`
| temperature | percent_unique | percent_valid | percent_unique_and_valid |
|--------------:|-----------------:|----------------:|---------------------------:|
| 0.5 | 0.928074 | 1 | 0.928074 |
| 0.75 | 0.998468 | 0.999967 | 0.998436 |
| 1 | 0.999659 | 0.999164 | 0.998823 |
| 1.25 | 0.999514 | 0.99351 | 0.993027 |
| 1.5 | 0.998749 | 0.970223 | 0.96901 |
Property histograms computed over 1m generated compounds:
![property histograms](https://github.com/kheyer/gpt2_zinc_87m/blob/main/generated_properties.png)