File size: 2,392 Bytes
bbc7ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from typing import List, Optional
from transformers import PretrainedConfig


class RZCompressionConfig(PretrainedConfig):
    """
    Configuration for the roberta_zinc embedding-compression models.

    Args:
        input_size (int):  Dimension of the input embedding.
        compression_sizes (List[int]):  One or more output dimensions.
        encoder_layers (int):  Number of FeedForwardLayers in the encoder path.
        decoder_layers (int):  Number of FeedForwardLayers in the optional decoder.
        dropout (float):  Drop-out prob in every layer except the final ones.
        layer_norm_eps (float | None):  Epsilon for LayerNorm.
        mse_loss_weight (float): Weight for MSE loss on base-to-compressed similarity matrices
        pearson_loss_weight (float): Weight for Pearson loss on base-to-compressed similarity matrices
        topk_values (List[int]): Top-k values for weighting mse/pearson loss 
        decoder_cosine_weight (float): weight for decoder cosine similarity loss 
    """
    model_type = "roberta_zinc_compression_encoder"

    def __init__(
        self,
        # ── model params ─────────────────────────────────────────────
        input_size: int = 768,
        compression_sizes: List[int] = (32, 64, 128, 256, 512),
        encoder_layers: int = 2,
        decoder_layers: int = 2,
        dropout: float = 0.1,
        layer_norm_eps: Optional[float] = 1e-12,
        # ── loss knobs ───────────────────────────────────────────────
        mse_loss_weight:          float = 0.0,
        pearson_loss_weight:      float = 0.0,
        topk_values:              list[int] = (10, 100),
        decoder_cosine_weight:    float = 0.0,
        **kwargs,
    ):
        self.input_size = input_size
        self.compression_sizes = list(compression_sizes)
        self.encoder_layers = encoder_layers
        self.decoder_layers = decoder_layers
        self.dropout = dropout
        self.layer_norm_eps = layer_norm_eps
        self.mse_loss_weight = mse_loss_weight
        self.topk_values = topk_values
        self.pearson_loss_weight = pearson_loss_weight
        self.decoder_cosine_weight = decoder_cosine_weight
        super().__init__(**kwargs)