Inference
- Install LLaVA-1.5 from https://github.com/haotian-liu/LLaVA
2-1. Inference Coarse Masks
MODEL_PATH=path/to/checkpoints/llava-v1.5-7b-task-lora-geoground
OUTPUT=data/exp_0125
ANSWER_PATH=$OUTPUT/llava-v1.5-7b-task-lora-geoground
GPU_NUM=0
echo "Processing RRSIS-D test"
IMAGE_FOLDER=path/to/data/images/rrsisd/
JSON_PATH=path/to/data/metadata/rrsisd_val.jsonl
CUDA_VISIBLE_DEVICES=$GPU_NUM \
python inference_hbb.py \
--model-path $MODEL_PATH \
--model-base $MODEL_PATH \
--question-file $JSON_PATH \
--image-folder $IMAGE_FOLDER \
--answers-file $ANSWER_PATH-rrsisd_val.jsonl \
--batch_size 1
2-2. Inference Horizontal Bounding Boxes (HBBs)
CUDA_VISIBLE_DEVICES=$GPU_NUM \
python inference_seg.py \
--model-path $MODEL_PATH \
--model-base $MODEL_PATH \
--question-file $JSON_PATH \
--image-folder $IMAGE_FOLDER \
--answers-file $ANSWER_PATH-rrsisd_val.jsonl \
--batch_size 1
3-1. Generate Masks using Coarse Masks
python generate_mask.py \
--answers-file $ANSWER_PATH-rrsisd_val.jsonl \
--image-folder $IMAGE_FOLDER \
--scale 16 \
--vis-dir $OUTPUT/vis_seg/
3-2. Generate Masks by SAM using HBBs
Download ViT-H SAM model from https://github.com/facebookresearch/segment-anything
python generate_mask_sam_by_box.py \
--answers-file $ANSWER_PATH-rrsisd_val.jsonl \
--image-folder $IMAGE_FOLDER \
--scale 16 \
--vis-dir $OUTPUT/vis_sam_box/
3-3. Generate Masks by SAM using HBBs and Coarse Masks
python generate_mask_sam_by_box+seg.py \
--answers-file $ANSWER_PATH-rrsisd_val.jsonl \
--image-folder $IMAGE_FOLDER \
--scale 16 \
--vis-dir $OUTPUT/vis_sam_box+seg/
- Compute Metric
python compute_mask_metric.py
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for erenzhou/GeoGround
Base model
liuhaotian/llava-v1.5-7b