See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_resume_from_checkpoints: false
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes:
datasets:
- data_files:
- df4145ffec439e54_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/df4145ffec439e54_train_data.json
type:
field_instruction: text
field_output: text_ja
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/56fde327-537c-4d7d-8a47-5553a75fd430
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 512
mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.5
wandb_entity: null
wandb_mode: online
wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
56fde327-537c-4d7d-8a47-5553a75fd430
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.6156
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.9448 | 0.0116 | 1 | 6.9446 |
6.6809 | 1.7442 | 150 | 6.6820 |
6.6655 | 3.4884 | 300 | 6.6633 |
6.6563 | 5.2326 | 450 | 6.6522 |
6.649 | 6.9767 | 600 | 6.6462 |
6.6442 | 8.7209 | 750 | 6.6431 |
6.6415 | 10.4651 | 900 | 6.6377 |
6.6357 | 12.2093 | 1050 | 6.6346 |
6.6334 | 13.9535 | 1200 | 6.6311 |
6.6309 | 15.6977 | 1350 | 6.6292 |
6.6386 | 17.4419 | 1500 | 6.6275 |
6.6273 | 19.1860 | 1650 | 6.6248 |
6.627 | 20.9302 | 1800 | 6.6227 |
6.6243 | 22.6744 | 1950 | 6.6207 |
6.6252 | 24.4186 | 2100 | 6.6195 |
6.6204 | 26.1628 | 2250 | 6.6187 |
6.6222 | 27.9070 | 2400 | 6.6182 |
6.6231 | 29.6512 | 2550 | 6.6176 |
6.6196 | 31.3953 | 2700 | 6.6171 |
6.6161 | 33.1395 | 2850 | 6.6168 |
6.6213 | 34.8837 | 3000 | 6.6165 |
6.6209 | 36.6279 | 3150 | 6.6162 |
6.6176 | 38.3721 | 3300 | 6.6160 |
6.6219 | 40.1163 | 3450 | 6.6158 |
6.619 | 41.8605 | 3600 | 6.6157 |
6.6143 | 43.6047 | 3750 | 6.6156 |
6.6199 | 45.3488 | 3900 | 6.6156 |
6.6195 | 47.0930 | 4050 | 6.6156 |
6.6185 | 48.8372 | 4200 | 6.6156 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for error577/56fde327-537c-4d7d-8a47-5553a75fd430
Base model
echarlaix/tiny-random-PhiForCausalLM