Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_resume_from_checkpoints: false
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 
datasets:
- data_files:
  - df4145ffec439e54_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/df4145ffec439e54_train_data.json
  type:
    field_instruction: text
    field_output: text_ja
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/56fde327-537c-4d7d-8a47-5553a75fd430
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 512
mlflow_experiment_name: /tmp/df4145ffec439e54_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.5
wandb_entity: null
wandb_mode: online
wandb_name: c30de9d5-9d24-44e1-9b62-deb3229d1fce
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c30de9d5-9d24-44e1-9b62-deb3229d1fce
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null

56fde327-537c-4d7d-8a47-5553a75fd430

This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.6156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 512
  • eval_batch_size: 512
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 30
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
6.9448 0.0116 1 6.9446
6.6809 1.7442 150 6.6820
6.6655 3.4884 300 6.6633
6.6563 5.2326 450 6.6522
6.649 6.9767 600 6.6462
6.6442 8.7209 750 6.6431
6.6415 10.4651 900 6.6377
6.6357 12.2093 1050 6.6346
6.6334 13.9535 1200 6.6311
6.6309 15.6977 1350 6.6292
6.6386 17.4419 1500 6.6275
6.6273 19.1860 1650 6.6248
6.627 20.9302 1800 6.6227
6.6243 22.6744 1950 6.6207
6.6252 24.4186 2100 6.6195
6.6204 26.1628 2250 6.6187
6.6222 27.9070 2400 6.6182
6.6231 29.6512 2550 6.6176
6.6196 31.3953 2700 6.6171
6.6161 33.1395 2850 6.6168
6.6213 34.8837 3000 6.6165
6.6209 36.6279 3150 6.6162
6.6176 38.3721 3300 6.6160
6.6219 40.1163 3450 6.6158
6.619 41.8605 3600 6.6157
6.6143 43.6047 3750 6.6156
6.6199 45.3488 3900 6.6156
6.6195 47.0930 4050 6.6156
6.6185 48.8372 4200 6.6156

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for error577/56fde327-537c-4d7d-8a47-5553a75fd430

Adapter
(193)
this model