See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: OpenBuddy/openbuddy-llama2-13b-v8.1-fp16
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes:
datasets:
- data_files:
- 94f6fb286f5ea21b_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/94f6fb286f5ea21b_train_data.json
type:
field_input: reasoning
field_instruction: instruction
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/5edf991a-3918-44cc-b7c0-d62d0148bcc9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 1
mlflow_experiment_name: /tmp/94f6fb286f5ea21b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 256
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.002
wandb_entity: null
wandb_mode: online
wandb_name: cc91ab3b-2456-4e2d-8366-bfcafbb83220
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: cc91ab3b-2456-4e2d-8366-bfcafbb83220
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
5edf991a-3918-44cc-b7c0-d62d0148bcc9
This model is a fine-tuned version of OpenBuddy/openbuddy-llama2-13b-v8.1-fp16 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6589
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.011 | 0.0001 | 1 | 3.1968 |
0.5169 | 0.0276 | 200 | 0.8890 |
1.0769 | 0.0552 | 400 | 0.8704 |
0.4427 | 0.0828 | 600 | 0.6995 |
0.4257 | 0.1104 | 800 | 0.7296 |
0.6477 | 0.1379 | 1000 | 0.6942 |
0.5291 | 0.1655 | 1200 | 0.6941 |
0.3514 | 0.1931 | 1400 | 0.6971 |
0.7765 | 0.2207 | 1600 | 0.6701 |
1.1211 | 0.2483 | 1800 | 0.6359 |
0.2929 | 0.2759 | 2000 | 0.6565 |
0.42 | 0.3035 | 2200 | 0.6618 |
0.4543 | 0.3311 | 2400 | 0.6589 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for error577/5edf991a-3918-44cc-b7c0-d62d0148bcc9
Base model
OpenBuddy/openbuddy-llama2-13b-v8.1-fp16