See axolotl config
axolotl version: 0.4.1
adapter: qlora
auto_resume_from_checkpoints: true
base_model: microsoft/Phi-3-mini-4k-instruct
bf16: auto
chat_template: llama3
dataset_prepared_path: null
dataset_processes: 6
datasets:
- data_files:
- e2ea22acdb815831_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e2ea22acdb815831_train_data.json
type:
field_instruction: premise
field_output: hypothesis
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: error577/e99b6a20-be94-4148-af75-f696f7fce256
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: null
micro_batch_size: 2
mlflow_experiment_name: /tmp/e2ea22acdb815831_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.005
wandb_entity: null
wandb_mode: online
wandb_name: c04ebf44-479a-4275-a61c-afd0b7f9fa9a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c04ebf44-479a-4275-a61c-afd0b7f9fa9a
warmup_steps: 30
weight_decay: 0.0
xformers_attention: null
e99b6a20-be94-4148-af75-f696f7fce256
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.6192
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
12.5501 | 0.0000 | 1 | 3.1170 |
8.1989 | 0.0095 | 200 | 1.6985 |
6.3793 | 0.0191 | 400 | 1.6660 |
8.2906 | 0.0286 | 600 | 1.6446 |
5.6457 | 0.0382 | 800 | 1.6340 |
7.2242 | 0.0477 | 1000 | 1.6225 |
6.4631 | 0.0573 | 1200 | 1.6280 |
5.7667 | 0.0668 | 1400 | 1.6251 |
8.727 | 0.0764 | 1600 | 1.6216 |
5.2037 | 0.0859 | 1800 | 1.6195 |
3.9859 | 0.0955 | 2000 | 1.6056 |
5.4473 | 0.1050 | 2200 | 1.6023 |
6.4552 | 0.1145 | 2400 | 1.6121 |
5.2552 | 0.1241 | 2600 | 1.6165 |
6.5086 | 0.1336 | 2800 | 1.6192 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.
Model tree for error577/e99b6a20-be94-4148-af75-f696f7fce256
Base model
microsoft/Phi-3-mini-4k-instruct