results_synt_data / README.md
exxyyf's picture
End of training
e8b3b4e verified
metadata
library_name: transformers
license: mit
base_model: cointegrated/rubert-tiny2
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: results_synt_data
    results: []

results_synt_data

This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1310
  • Precision: 0.7870
  • Recall: 0.8681
  • F1: 0.8256
  • Accuracy: 0.9644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.061 1.0 2700 0.2892 0.4979 0.6620 0.5684 0.9082
0.0426 2.0 5400 0.1871 0.6795 0.7840 0.7280 0.9438
0.0321 3.0 8100 0.1526 0.7172 0.8293 0.7692 0.9519
0.0257 4.0 10800 0.1382 0.7414 0.8407 0.7880 0.9566
0.0211 5.0 13500 0.1359 0.7545 0.8477 0.7984 0.9587
0.0182 6.0 16200 0.1300 0.7738 0.8581 0.8138 0.9620
0.015 7.0 18900 0.1344 0.7811 0.8616 0.8194 0.9625
0.0135 8.0 21600 0.1309 0.7810 0.8681 0.8223 0.9628
0.0135 9.0 24300 0.1326 0.7881 0.8681 0.8261 0.9643
0.0121 10.0 27000 0.1310 0.7870 0.8681 0.8256 0.9644

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0
  • Datasets 3.5.0
  • Tokenizers 0.21.1