|
--- |
|
license: cc-by-nc-4.0 |
|
pipeline_tag: automatic-speech-recognition |
|
base_model: |
|
- openai/whisper-small |
|
library_name: transformers |
|
language: |
|
- ami |
|
- trv |
|
- bnn |
|
- pwn |
|
- tay |
|
- tsu |
|
- tao |
|
- dru |
|
- xsy |
|
- pyu |
|
- szy |
|
- ckv |
|
- sxr |
|
- ssf |
|
- xnb |
|
--- |
|
# Model Card for whisper-small-formosan-all |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
This model is a fine-tuned version of the Taiwanese indigenous [openai/whisper-small](https://huggingface.co/openai/whisper-small). |
|
Note: we use indonesian as whisper language id |
|
|
|
### Training process |
|
The training of the model was performed with the following hyperparameters |
|
- Batch size: 32*4 (on 4 L40s GPU) |
|
- Gradient accumulation steps: 8 |
|
- Total steps: 1600 |
|
- Learning rate: 1.25e-5 |
|
- Data augmentation: No |
|
- Optimizer: schedule_free_adamw |
|
- LR scheduler type: constant |
|
|
|
|
|
### How to use |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
model_id = "formospeech/whisper-small-formosan-all" |
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
processor = AutoProcessor.from_pretrained(model_id) |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
max_new_tokens=128, |
|
chunk_length_s=30, |
|
batch_size=16, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
generate_kwargs = {"language": "id"} |
|
transcription = pipe("path/to/my_audio.wav", generate_kwargs=generate_kwargs) |
|
print(transcription) |
|
``` |