gokuls's picture
End of training
c7ac795
metadata
base_model: gokuls/HBERTv1_48_L6_H128_A2
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L6_H128_A2_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7791441219872111

HBERTv1_48_L6_H128_A2_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L6_H128_A2 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9439
  • Accuracy: 0.7791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.7427 1.0 180 3.3038 0.2110
3.0115 2.0 360 2.6361 0.3601
2.4129 3.0 540 2.1001 0.4988
1.946 4.0 720 1.7411 0.5617
1.6252 5.0 900 1.4891 0.6188
1.3825 6.0 1080 1.3293 0.6508
1.201 7.0 1260 1.2183 0.6990
1.074 8.0 1440 1.1335 0.7304
0.9698 9.0 1620 1.0699 0.7472
0.8878 10.0 1800 1.0251 0.7555
0.8286 11.0 1980 0.9941 0.7629
0.7817 12.0 2160 0.9766 0.7678
0.7388 13.0 2340 0.9558 0.7703
0.7157 14.0 2520 0.9489 0.7782
0.6877 15.0 2700 0.9439 0.7791

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0