gokuls's picture
End of training
8db0d66
metadata
base_model: gokuls/HBERTv1_48_L8_H64_A2
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L8_H64_A2_emotion
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          config: split
          split: validation
          args: split
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.838

HBERTv1_48_L8_H64_A2_emotion

This model is a fine-tuned version of gokuls/HBERTv1_48_L8_H64_A2 on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5469
  • Accuracy: 0.838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6018 1.0 250 1.4581 0.476
1.3077 2.0 500 1.1563 0.5335
1.0679 3.0 750 0.9798 0.6695
0.8802 4.0 1000 0.7861 0.7415
0.7364 5.0 1250 0.6777 0.804
0.6419 6.0 1500 0.6319 0.8145
0.5762 7.0 1750 0.5870 0.8295
0.5311 8.0 2000 0.5629 0.8345
0.5022 9.0 2250 0.5530 0.8355
0.4777 10.0 2500 0.5469 0.838

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0