great0001's picture
End of training
be115cd verified
|
raw
history blame
4.57 kB
metadata
library_name: peft
license: apache-2.0
base_model: EleutherAI/pythia-160m
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: 1049f57e-4e7b-4d20-8524-075e12b98361
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - cabe0edc52f1824b_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/cabe0edc52f1824b_train_data.json
  type:
    field_input: policy
    field_instruction: redteam_query
    field_output: jailbreak_query
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 200
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: great0001/1049f57e-4e7b-4d20-8524-075e12b98361
hub_strategy: end
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lr_scheduler: constant
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 17977
micro_batch_size: 4
mlflow_experiment_name: /tmp/cabe0edc52f1824b_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 200
saves_per_epoch: null
sequence_len: 512
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2677b7fe-e0a2-439d-a729-54f9c5263ad0
wandb_project: SN56-33
wandb_run: your_name
wandb_runid: 2677b7fe-e0a2-439d-a729-54f9c5263ad0
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

1049f57e-4e7b-4d20-8524-075e12b98361

This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3410

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 50
  • training_steps: 16614

Training results

Training Loss Epoch Step Validation Loss
No log 0.0006 1 5.0096
19.4463 0.1204 200 5.1624
16.3716 0.2407 400 3.9670
15.4725 0.3611 600 4.3231
13.6185 0.4815 800 4.5737
13.2182 0.6019 1000 3.3886
11.9674 0.7222 1200 3.3497
11.3688 0.8426 1400 3.2310
12.5514 0.9630 1600 3.9830
10.2903 1.0835 1800 2.4156
8.989 1.2039 2000 2.3129
9.2686 1.3243 2200 2.4183
9.0286 1.4446 2400 2.4323
9.8924 1.5650 2600 2.3410

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1