metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: A man is jumping unto his filthy bed.
sentences:
- A young male is looking at a newspaper while 2 females walks past him.
- The bed is dirty.
- The man is on the moon.
- source_sentence: >-
A carefully balanced male stands on one foot near a clean ocean beach
area.
sentences:
- A man is ouside near the beach.
- Three policemen patrol the streets on bikes
- A man is sitting on his couch.
- source_sentence: The man is wearing a blue shirt.
sentences:
- Near the trashcan the man stood and smoked
- >-
A man in a blue shirt leans on a wall beside a road with a blue van and
red car with water in the background.
- A man in a black shirt is playing a guitar.
- source_sentence: The girls are outdoors.
sentences:
- Two girls riding on an amusement part ride.
- a guy laughs while doing laundry
- >-
Three girls are standing together in a room, one is listening, one is
writing on a wall and the third is talking to them.
- source_sentence: >-
A construction worker peeking out of a manhole while his coworker sits on
the sidewalk smiling.
sentences:
- A worker is looking out of a manhole.
- A man is giving a presentation.
- The workers are both inside the manhole.
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
model-index:
- name: MPNet base trained on AllNLI triplets
results:
- task:
type: triplet
name: Triplet
dataset:
name: all nli dev
type: all-nli-dev
metrics:
- type: cosine_accuracy
value: 0.9205650091171265
name: Cosine Accuracy
- task:
type: triplet
name: Triplet
dataset:
name: all nli test
type: all-nli-test
metrics:
- type: cosine_accuracy
value: 0.9275230765342712
name: Cosine Accuracy
MPNet base trained on AllNLI triplets
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hajimeni/mpnet-base-all-nli-triplet")
# Run inference
sentences = [
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
'A worker is looking out of a manhole.',
'The workers are both inside the manhole.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Datasets:
all-nli-dev
andall-nli-test
- Evaluated with
TripletEvaluator
Metric | all-nli-dev | all-nli-test |
---|---|---|
cosine_accuracy | 0.9206 | 0.9275 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 557,850 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 7 tokens
- mean: 10.46 tokens
- max: 46 tokens
- min: 6 tokens
- mean: 12.81 tokens
- max: 40 tokens
- min: 5 tokens
- mean: 13.4 tokens
- max: 50 tokens
- Samples:
anchor positive negative A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
A person is at a diner, ordering an omelette.
Children smiling and waving at camera
There are children present
The kids are frowning
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
The boy skates down the sidewalk.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,584 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 6 tokens
- mean: 17.95 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.78 tokens
- max: 29 tokens
- min: 5 tokens
- mean: 10.35 tokens
- max: 29 tokens
- Samples:
anchor positive negative Two women are embracing while holding to go packages.
Two woman are holding packages.
The men are fighting outside a deli.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
Two kids in jackets walk to school.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
A woman drinks her coffee in a small cafe.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | all-nli-dev_cosine_accuracy | all-nli-test_cosine_accuracy |
---|---|---|---|---|---|
-1 | -1 | - | - | 0.6211 | - |
0.016 | 100 | 3.1887 | 1.5698 | 0.7397 | - |
0.032 | 200 | 1.5596 | 0.7194 | 0.8079 | - |
0.048 | 300 | 1.096 | 0.6102 | 0.8215 | - |
0.064 | 400 | 1.0 | 0.5752 | 0.8346 | - |
0.08 | 500 | 0.9284 | 0.5318 | 0.8487 | - |
0.096 | 600 | 0.8817 | 0.5221 | 0.8546 | - |
0.112 | 700 | 0.8336 | 0.4949 | 0.8606 | - |
0.128 | 800 | 0.8156 | 0.5222 | 0.8659 | - |
0.144 | 900 | 0.7558 | 0.4518 | 0.8864 | - |
0.16 | 1000 | 0.6718 | 0.4378 | 0.8799 | - |
0.176 | 1100 | 0.7212 | 0.4335 | 0.8888 | - |
0.192 | 1200 | 0.6501 | 0.4439 | 0.8843 | - |
0.208 | 1300 | 0.6612 | 0.3902 | 0.9020 | - |
0.224 | 1400 | 0.6329 | 0.4084 | 0.8908 | - |
0.24 | 1500 | 0.6895 | 0.4187 | 0.9001 | - |
0.256 | 1600 | 0.6213 | 0.3808 | 0.9083 | - |
0.272 | 1700 | 0.6172 | 0.4240 | 0.8952 | - |
0.288 | 1800 | 0.5874 | 0.3966 | 0.9023 | - |
0.304 | 1900 | 0.548 | 0.3861 | 0.8990 | - |
0.32 | 2000 | 0.5164 | 0.3730 | 0.9064 | - |
0.336 | 2100 | 0.5244 | 0.3737 | 0.9057 | - |
0.352 | 2200 | 0.5288 | 0.3807 | 0.9048 | - |
0.368 | 2300 | 0.5118 | 0.3888 | 0.9045 | - |
0.384 | 2400 | 0.5102 | 0.3693 | 0.9055 | - |
0.4 | 2500 | 0.5109 | 0.3668 | 0.9083 | - |
0.416 | 2600 | 0.5027 | 0.3728 | 0.9084 | - |
0.432 | 2700 | 0.5856 | 0.3640 | 0.9098 | - |
0.448 | 2800 | 0.4848 | 0.3610 | 0.9125 | - |
0.464 | 2900 | 0.5037 | 0.3678 | 0.9104 | - |
0.48 | 3000 | 0.5094 | 0.3549 | 0.9146 | - |
0.496 | 3100 | 0.5108 | 0.3515 | 0.9140 | - |
0.512 | 3200 | 0.4271 | 0.3520 | 0.9140 | - |
0.528 | 3300 | 0.4451 | 0.3524 | 0.9149 | - |
0.544 | 3400 | 0.4613 | 0.3507 | 0.9160 | - |
0.56 | 3500 | 0.4464 | 0.3486 | 0.9142 | - |
0.576 | 3600 | 0.3953 | 0.3490 | 0.9146 | - |
0.592 | 3700 | 0.4502 | 0.3499 | 0.9142 | - |
0.608 | 3800 | 0.4307 | 0.3513 | 0.9151 | - |
0.624 | 3900 | 0.4364 | 0.3438 | 0.9142 | - |
0.64 | 4000 | 0.4573 | 0.3425 | 0.9146 | - |
0.656 | 4100 | 0.3874 | 0.3470 | 0.9151 | - |
0.672 | 4200 | 0.3758 | 0.3466 | 0.9131 | - |
0.688 | 4300 | 0.4139 | 0.3438 | 0.9146 | - |
0.704 | 4400 | 0.3769 | 0.3465 | 0.9157 | - |
0.72 | 4500 | 0.427 | 0.3507 | 0.9174 | - |
0.736 | 4600 | 0.3701 | 0.3374 | 0.9172 | - |
0.752 | 4700 | 0.4066 | 0.3383 | 0.9174 | - |
0.768 | 4800 | 0.4148 | 0.3338 | 0.9160 | - |
0.784 | 4900 | 0.4476 | 0.3358 | 0.9183 | - |
0.8 | 5000 | 0.352 | 0.3356 | 0.9165 | - |
0.816 | 5100 | 0.3847 | 0.3358 | 0.9183 | - |
0.832 | 5200 | 0.3878 | 0.3346 | 0.9178 | - |
0.848 | 5300 | 0.3869 | 0.3344 | 0.9172 | - |
0.864 | 5400 | 0.3728 | 0.3337 | 0.9197 | - |
0.88 | 5500 | 0.3655 | 0.3335 | 0.9183 | - |
0.896 | 5600 | 0.3631 | 0.3324 | 0.9209 | - |
0.912 | 5700 | 0.3801 | 0.3320 | 0.9225 | - |
0.928 | 5800 | 0.3622 | 0.3315 | 0.9207 | - |
0.944 | 5900 | 0.3554 | 0.3325 | 0.9206 | - |
0.96 | 6000 | 0.3835 | 0.3321 | 0.9206 | - |
0.976 | 6100 | 0.3748 | 0.3318 | 0.9203 | - |
0.992 | 6200 | 0.1938 | 0.3312 | 0.9206 | - |
-1 | -1 | - | - | - | 0.9275 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.50.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}