metadata
license: apache-2.0
datasets:
- open-r1/OpenR1-Math-220k
- yentinglin/s1K-1.1-trl-format
- simplescaling/s1K-1.1
language:
- en
metrics:
- accuracy
base_model: yentinglin/Mistral-Small-24B-Instruct-2501-reasoning
pipeline_tag: text-generation
tags:
- reasoning
- llama-cpp
- gguf-my-repo
model-index:
- name: yentinglin/Mistral-Small-24B-Instruct-2501-reasoning
results:
- task:
type: text-generation
dataset:
name: MATH-500
type: MATH
metrics:
- type: pass@1
value: 0.95
name: pass@1
verified: false
source:
url: >-
https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
name: yentinglin/zhtw-reasoning-eval-leaderboard
- task:
type: text-generation
dataset:
name: AIME 2025
type: AIME
metrics:
- type: pass@1
value: 0.5333
name: pass@1
verified: false
- type: pass@1
value: 0.6667
name: pass@1
verified: false
source:
url: >-
https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
name: yentinglin/zhtw-reasoning-eval-leaderboard
- task:
type: text-generation
dataset:
name: GPQA Diamond
type: GPQA
metrics:
- type: pass@1
value: 0.62022
name: pass@1
verified: false
source:
url: >-
https://huggingface.co/spaces/yentinglin/zhtw-reasoning-eval-leaderboard
name: yentinglin/zhtw-reasoning-eval-leaderboard
Hasso5703/Mistral-Small-24B-Instruct-2501-reasoning-Q8_0-GGUF
This model was converted to GGUF format from yentinglin/Mistral-Small-24B-Instruct-2501-reasoning
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Hasso5703/Mistral-Small-24B-Instruct-2501-reasoning-Q8_0-GGUF --hf-file mistral-small-24b-instruct-2501-reasoning-q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Hasso5703/Mistral-Small-24B-Instruct-2501-reasoning-Q8_0-GGUF --hf-file mistral-small-24b-instruct-2501-reasoning-q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Hasso5703/Mistral-Small-24B-Instruct-2501-reasoning-Q8_0-GGUF --hf-file mistral-small-24b-instruct-2501-reasoning-q8_0.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Hasso5703/Mistral-Small-24B-Instruct-2501-reasoning-Q8_0-GGUF --hf-file mistral-small-24b-instruct-2501-reasoning-q8_0.gguf -c 2048