Regulatory Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hshashank06/regulatory-model")
# Run inference
sentences = [
' Home Depot\'s stock closed at $135.39 while being above a "golden cross" on January 19, 2017.',
' In the given text passage, when did Home Depot\'s stock close at $135.39 while being above a "golden cross"? \n',
' According to Maley, where might the funds from potentially declining sectors like FANGs be directed towards? \n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.6027 | 0.5989 | 0.5881 | 0.5719 | 0.5443 |
cosine_accuracy@3 | 0.7349 | 0.7302 | 0.7223 | 0.7058 | 0.6759 |
cosine_accuracy@5 | 0.7676 | 0.7651 | 0.7568 | 0.7406 | 0.7139 |
cosine_accuracy@10 | 0.8058 | 0.8034 | 0.7947 | 0.7819 | 0.7583 |
cosine_precision@1 | 0.6027 | 0.5989 | 0.5881 | 0.5719 | 0.5443 |
cosine_precision@3 | 0.245 | 0.2434 | 0.2408 | 0.2353 | 0.2253 |
cosine_precision@5 | 0.1535 | 0.153 | 0.1514 | 0.1481 | 0.1428 |
cosine_precision@10 | 0.0806 | 0.0803 | 0.0795 | 0.0782 | 0.0758 |
cosine_recall@1 | 0.6027 | 0.5989 | 0.5881 | 0.5719 | 0.5443 |
cosine_recall@3 | 0.7349 | 0.7302 | 0.7223 | 0.7058 | 0.6759 |
cosine_recall@5 | 0.7676 | 0.7651 | 0.7568 | 0.7406 | 0.7139 |
cosine_recall@10 | 0.8058 | 0.8034 | 0.7947 | 0.7819 | 0.7583 |
cosine_ndcg@10 | 0.7073 | 0.704 | 0.6945 | 0.6793 | 0.6523 |
cosine_mrr@10 | 0.6755 | 0.6719 | 0.6622 | 0.6463 | 0.6182 |
cosine_map@100 | 0.6797 | 0.6761 | 0.6666 | 0.6508 | 0.6229 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 185,814 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 3 tokens
- mean: 43.18 tokens
- max: 200 tokens
- min: 10 tokens
- mean: 23.08 tokens
- max: 63 tokens
- Samples:
positive anchor The BVPS (Book Value Per Share) is calculated by dividing a company's common equity value by its total number of shares outstanding. In the given example, if a company has a common equity value of $100 million and 10 million shares outstanding, its BVPS would be $10 ($100 million / 10 million). You can calculate a company's BVPS using Microsoft Excel by entering the values of common stock, retained earnings, and additional paid-in capital into cells A1 through A3.
What is the BVPS and how is it calculated?
They facilitate commodities trading using their resources, can take delivery of commodities if needed, provide advisory services for clients, and act as market makers by buying and selling futures contracts to add liquidity to the marketplace. The passage uses the example of a commercial baking firm to demonstrate how their impact can be seen in the market.
What role do eligible commercial entities play in commodities trading and market liquidity?
Naive diversification is a type of diversification strategy where an investor randomly selects different securities, hoping to lower the risk of the portfolio due to the varied nature of the chosen securities. It is less sophisticated than diversification methods using statistical modeling, but when guided by experience, careful security examination, and common sense, it remains an effective strategy for reducing portfolio risk.
What is the concept of naive diversification in investing and how does it compare to more sophisticated diversification methods?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.0276 | 10 | 43.573 | - | - | - | - | - |
0.0551 | 20 | 42.1758 | - | - | - | - | - |
0.0827 | 30 | 37.6368 | - | - | - | - | - |
0.1102 | 40 | 34.5743 | - | - | - | - | - |
0.1378 | 50 | 29.5956 | - | - | - | - | - |
0.1653 | 60 | 23.4468 | - | - | - | - | - |
0.1929 | 70 | 19.7425 | - | - | - | - | - |
0.2204 | 80 | 16.9744 | - | - | - | - | - |
0.2480 | 90 | 15.2437 | - | - | - | - | - |
0.2755 | 100 | 13.9444 | - | - | - | - | - |
0.3031 | 110 | 12.067 | - | - | - | - | - |
0.3306 | 120 | 11.1149 | - | - | - | - | - |
0.3582 | 130 | 10.4083 | - | - | - | - | - |
0.3857 | 140 | 8.915 | - | - | - | - | - |
0.4133 | 150 | 9.4964 | - | - | - | - | - |
0.4408 | 160 | 8.0434 | - | - | - | - | - |
0.4684 | 170 | 8.1963 | - | - | - | - | - |
0.4960 | 180 | 8.5704 | - | - | - | - | - |
0.5235 | 190 | 7.711 | - | - | - | - | - |
0.5511 | 200 | 7.6676 | - | - | - | - | - |
0.5786 | 210 | 6.9899 | - | - | - | - | - |
0.6062 | 220 | 7.6195 | - | - | - | - | - |
0.6337 | 230 | 7.0456 | - | - | - | - | - |
0.6613 | 240 | 7.5541 | - | - | - | - | - |
0.6888 | 250 | 6.6543 | - | - | - | - | - |
0.7164 | 260 | 6.8849 | - | - | - | - | - |
0.7439 | 270 | 7.6635 | - | - | - | - | - |
0.7715 | 280 | 7.2155 | - | - | - | - | - |
0.7990 | 290 | 6.3284 | - | - | - | - | - |
0.8266 | 300 | 6.577 | - | - | - | - | - |
0.8541 | 310 | 5.0835 | - | - | - | - | - |
0.8817 | 320 | 6.1866 | - | - | - | - | - |
0.9092 | 330 | 5.9467 | - | - | - | - | - |
0.9368 | 340 | 5.663 | - | - | - | - | - |
0.9644 | 350 | 5.417 | - | - | - | - | - |
0.9919 | 360 | 6.0331 | - | - | - | - | - |
0.9974 | 362 | - | 0.6940 | 0.6900 | 0.6791 | 0.6603 | 0.6273 |
1.0220 | 370 | 5.5374 | - | - | - | - | - |
1.0496 | 380 | 4.5917 | - | - | - | - | - |
1.0771 | 390 | 4.6483 | - | - | - | - | - |
1.1047 | 400 | 4.96 | - | - | - | - | - |
1.1323 | 410 | 4.6808 | - | - | - | - | - |
1.1598 | 420 | 5.2396 | - | - | - | - | - |
1.1874 | 430 | 4.651 | - | - | - | - | - |
1.2149 | 440 | 4.4875 | - | - | - | - | - |
1.2425 | 450 | 4.6877 | - | - | - | - | - |
1.2700 | 460 | 4.2209 | - | - | - | - | - |
1.2976 | 470 | 4.678 | - | - | - | - | - |
1.3251 | 480 | 4.6774 | - | - | - | - | - |
1.3527 | 490 | 4.4409 | - | - | - | - | - |
1.3802 | 500 | 4.4464 | - | - | - | - | - |
1.4078 | 510 | 4.2724 | - | - | - | - | - |
1.4353 | 520 | 4.5017 | - | - | - | - | - |
1.4629 | 530 | 4.3469 | - | - | - | - | - |
1.4904 | 540 | 4.4925 | - | - | - | - | - |
1.5180 | 550 | 3.922 | - | - | - | - | - |
1.5455 | 560 | 4.6949 | - | - | - | - | - |
1.5731 | 570 | 4.0364 | - | - | - | - | - |
1.6007 | 580 | 4.3846 | - | - | - | - | - |
1.6282 | 590 | 3.7526 | - | - | - | - | - |
1.6558 | 600 | 4.0508 | - | - | - | - | - |
1.6833 | 610 | 4.6315 | - | - | - | - | - |
1.7109 | 620 | 3.7683 | - | - | - | - | - |
1.7384 | 630 | 4.6994 | - | - | - | - | - |
1.7660 | 640 | 4.1994 | - | - | - | - | - |
1.7935 | 650 | 4.3915 | - | - | - | - | - |
1.8211 | 660 | 4.2947 | - | - | - | - | - |
1.8486 | 670 | 4.6972 | - | - | - | - | - |
1.8762 | 680 | 4.1664 | - | - | - | - | - |
1.9037 | 690 | 4.1861 | - | - | - | - | - |
1.9313 | 700 | 3.6879 | - | - | - | - | - |
1.9588 | 710 | 4.3767 | - | - | - | - | - |
1.9864 | 720 | 4.48 | - | - | - | - | - |
1.9974 | 724 | - | 0.7013 | 0.6971 | 0.6885 | 0.6716 | 0.6414 |
2.0165 | 730 | 3.6164 | - | - | - | - | - |
2.0441 | 740 | 3.3361 | - | - | - | - | - |
2.0716 | 750 | 3.4175 | - | - | - | - | - |
2.0992 | 760 | 3.9006 | - | - | - | - | - |
2.1267 | 770 | 3.0823 | - | - | - | - | - |
2.1543 | 780 | 3.029 | - | - | - | - | - |
2.1818 | 790 | 3.8081 | - | - | - | - | - |
2.2094 | 800 | 3.4486 | - | - | - | - | - |
2.2370 | 810 | 3.6064 | - | - | - | - | - |
2.2645 | 820 | 3.0896 | - | - | - | - | - |
2.2921 | 830 | 3.3233 | - | - | - | - | - |
2.3196 | 840 | 2.9528 | - | - | - | - | - |
2.3472 | 850 | 3.0482 | - | - | - | - | - |
2.3747 | 860 | 3.2795 | - | - | - | - | - |
2.4023 | 870 | 2.9218 | - | - | - | - | - |
2.4298 | 880 | 3.4518 | - | - | - | - | - |
2.4574 | 890 | 3.6095 | - | - | - | - | - |
2.4849 | 900 | 3.2002 | - | - | - | - | - |
2.5125 | 910 | 3.368 | - | - | - | - | - |
2.5400 | 920 | 3.0623 | - | - | - | - | - |
2.5676 | 930 | 3.3495 | - | - | - | - | - |
2.5951 | 940 | 3.7123 | - | - | - | - | - |
2.6227 | 950 | 3.7795 | - | - | - | - | - |
2.6502 | 960 | 3.5567 | - | - | - | - | - |
2.6778 | 970 | 3.3498 | - | - | - | - | - |
2.7054 | 980 | 3.3141 | - | - | - | - | - |
2.7329 | 990 | 2.9425 | - | - | - | - | - |
2.7605 | 1000 | 2.9978 | - | - | - | - | - |
2.7880 | 1010 | 3.2468 | - | - | - | - | - |
2.8156 | 1020 | 2.5252 | - | - | - | - | - |
2.8431 | 1030 | 3.3108 | - | - | - | - | - |
2.8707 | 1040 | 3.195 | - | - | - | - | - |
2.8982 | 1050 | 3.1019 | - | - | - | - | - |
2.9258 | 1060 | 3.7059 | - | - | - | - | - |
2.9533 | 1070 | 3.1952 | - | - | - | - | - |
2.9809 | 1080 | 3.2454 | - | - | - | - | - |
2.9974 | 1086 | - | 0.7056 | 0.7030 | 0.6939 | 0.6779 | 0.6505 |
3.0110 | 1090 | 3.3788 | - | - | - | - | - |
3.0386 | 1100 | 2.9617 | - | - | - | - | - |
3.0661 | 1110 | 3.4313 | - | - | - | - | - |
3.0937 | 1120 | 2.5883 | - | - | - | - | - |
3.1212 | 1130 | 2.8836 | - | - | - | - | - |
3.1488 | 1140 | 2.3895 | - | - | - | - | - |
3.1763 | 1150 | 2.5155 | - | - | - | - | - |
3.2039 | 1160 | 3.3168 | - | - | - | - | - |
3.2314 | 1170 | 3.0286 | - | - | - | - | - |
3.2590 | 1180 | 3.1494 | - | - | - | - | - |
3.2866 | 1190 | 2.87 | - | - | - | - | - |
3.3141 | 1200 | 2.591 | - | - | - | - | - |
3.3417 | 1210 | 2.8437 | - | - | - | - | - |
3.3692 | 1220 | 3.0344 | - | - | - | - | - |
3.3968 | 1230 | 3.0685 | - | - | - | - | - |
3.4243 | 1240 | 3.4623 | - | - | - | - | - |
3.4519 | 1250 | 3.4256 | - | - | - | - | - |
3.4794 | 1260 | 2.7349 | - | - | - | - | - |
3.5070 | 1270 | 2.8587 | - | - | - | - | - |
3.5345 | 1280 | 2.729 | - | - | - | - | - |
3.5621 | 1290 | 3.0288 | - | - | - | - | - |
3.5896 | 1300 | 2.6599 | - | - | - | - | - |
3.6172 | 1310 | 2.4755 | - | - | - | - | - |
3.6447 | 1320 | 3.0501 | - | - | - | - | - |
3.6723 | 1330 | 2.545 | - | - | - | - | - |
3.6998 | 1340 | 2.5919 | - | - | - | - | - |
3.7274 | 1350 | 2.9026 | - | - | - | - | - |
3.7550 | 1360 | 2.7362 | - | - | - | - | - |
3.7825 | 1370 | 3.3311 | - | - | - | - | - |
3.8101 | 1380 | 2.8415 | - | - | - | - | - |
3.8376 | 1390 | 3.2033 | - | - | - | - | - |
3.8652 | 1400 | 2.7483 | - | - | - | - | - |
3.8927 | 1410 | 3.0403 | - | - | - | - | - |
3.9203 | 1420 | 3.0724 | - | - | - | - | - |
3.9478 | 1430 | 2.9797 | - | - | - | - | - |
3.9754 | 1440 | 2.6779 | - | - | - | - | - |
3.9974 | 1448 | - | 0.7073 | 0.704 | 0.6945 | 0.6793 | 0.6523 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.3.0
- Datasets: 3.4.1
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for hshashank06/regulatory-model
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.603
- Cosine Accuracy@3 on dim 768self-reported0.735
- Cosine Accuracy@5 on dim 768self-reported0.768
- Cosine Accuracy@10 on dim 768self-reported0.806
- Cosine Precision@1 on dim 768self-reported0.603
- Cosine Precision@3 on dim 768self-reported0.245
- Cosine Precision@5 on dim 768self-reported0.154
- Cosine Precision@10 on dim 768self-reported0.081
- Cosine Recall@1 on dim 768self-reported0.603
- Cosine Recall@3 on dim 768self-reported0.735