|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: llava-hf/llava-v1.6-mistral-7b-hf |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: CompCap-GPT4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CompCap-GPT4 |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the CompCap-GPT4 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7652 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.9184 | 0.1296 | 50 | 0.9209 | |
|
| 0.8611 | 0.2592 | 100 | 0.8653 | |
|
| 0.8257 | 0.3889 | 150 | 0.8396 | |
|
| 0.8308 | 0.5185 | 200 | 0.8231 | |
|
| 0.8168 | 0.6481 | 250 | 0.8109 | |
|
| 0.8021 | 0.7777 | 300 | 0.8005 | |
|
| 0.7741 | 0.9073 | 350 | 0.7929 | |
|
| 0.7155 | 1.0369 | 400 | 0.7880 | |
|
| 0.7322 | 1.1666 | 450 | 0.7837 | |
|
| 0.7214 | 1.2962 | 500 | 0.7790 | |
|
| 0.6936 | 1.4258 | 550 | 0.7753 | |
|
| 0.7046 | 1.5554 | 600 | 0.7717 | |
|
| 0.6967 | 1.6850 | 650 | 0.7690 | |
|
| 0.7197 | 1.8146 | 700 | 0.7658 | |
|
| 0.704 | 1.9443 | 750 | 0.7633 | |
|
| 0.6546 | 2.0739 | 800 | 0.7677 | |
|
| 0.651 | 2.2035 | 850 | 0.7673 | |
|
| 0.6601 | 2.3331 | 900 | 0.7667 | |
|
| 0.6669 | 2.4627 | 950 | 0.7662 | |
|
| 0.6566 | 2.5924 | 1000 | 0.7657 | |
|
| 0.6654 | 2.7220 | 1050 | 0.7655 | |
|
| 0.6389 | 2.8516 | 1100 | 0.7653 | |
|
| 0.6574 | 2.9812 | 1150 | 0.7653 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.3 |
|
|