|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: llava-hf/llava-v1.6-mistral-7b-hf |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: RLAIF-V-Coccur-q0_25_preference |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# RLAIF-V-Coccur-q0_25_preference |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the RLAIF-V-Coccur-q0_25_preference dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5440 |
|
- Rewards/chosen: -2.3911 |
|
- Rewards/rejected: -4.1460 |
|
- Rewards/accuracies: 0.7188 |
|
- Rewards/margins: 1.7550 |
|
- Logps/rejected: -201.5194 |
|
- Logps/chosen: -183.7933 |
|
- Logits/rejected: -2.7049 |
|
- Logits/chosen: -2.7311 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5904 | 0.6944 | 50 | 0.5585 | 0.1767 | -0.5308 | 0.6953 | 0.7075 | -165.3675 | -158.1156 | -2.7400 | -2.7505 | |
|
| 0.2124 | 1.3889 | 100 | 0.5330 | -0.9785 | -2.2414 | 0.7344 | 1.2630 | -182.4733 | -169.6674 | -2.6846 | -2.7028 | |
|
| 0.1027 | 2.0833 | 150 | 0.5209 | -1.3289 | -2.7382 | 0.7305 | 1.4093 | -187.4415 | -173.1719 | -2.7648 | -2.7841 | |
|
| 0.0793 | 2.7778 | 200 | 0.5435 | -2.3758 | -4.1313 | 0.7227 | 1.7554 | -201.3717 | -183.6412 | -2.7055 | -2.7316 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.3 |
|
|