|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: llava-hf/llava-v1.6-mistral-7b-hf |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: AA_preference_l0_new_step10_0_60 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AA_preference_l0_new_step10_0_60 |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_l0_new_step10_0_60 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5930 |
|
- Rewards/chosen: 0.5295 |
|
- Rewards/rejected: -1.8896 |
|
- Rewards/accuracies: 0.7917 |
|
- Rewards/margins: 2.4190 |
|
- Logps/rejected: -242.2141 |
|
- Logps/chosen: -237.5954 |
|
- Logits/rejected: -2.0873 |
|
- Logits/chosen: -2.1246 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.5728 | 0.6231 | 50 | 0.5968 | 0.7303 | -0.4694 | 0.7257 | 1.1997 | -228.0123 | -235.5866 | -2.3844 | -2.3915 | |
|
| 0.2338 | 1.2461 | 100 | 0.6138 | 0.8569 | -1.0717 | 0.7708 | 1.9286 | -234.0351 | -234.3208 | -2.3760 | -2.3908 | |
|
| 0.2653 | 1.8692 | 150 | 0.5830 | 0.4703 | -1.7333 | 0.7847 | 2.2035 | -240.6510 | -238.1874 | -2.0378 | -2.0764 | |
|
| 0.1596 | 2.4922 | 200 | 0.5909 | 0.5892 | -1.8017 | 0.7951 | 2.3909 | -241.3353 | -236.9982 | -2.0980 | -2.1340 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.3 |
|
|