|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: llava-hf/llava-v1.6-mistral-7b-hf |
|
tags: |
|
- llama-factory |
|
- full |
|
- generated_from_trainer |
|
model-index: |
|
- name: AA_preference_random_0_80 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# AA_preference_random_0_80 |
|
|
|
This model is a fine-tuned version of [llava-hf/llava-v1.6-mistral-7b-hf](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf) on the AA_preference_random_0_80 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5567 |
|
- Rewards/chosen: -0.0039 |
|
- Rewards/rejected: -2.3714 |
|
- Rewards/accuracies: 0.8021 |
|
- Rewards/margins: 2.3675 |
|
- Logps/rejected: -234.5394 |
|
- Logps/chosen: -232.6765 |
|
- Logits/rejected: -2.2685 |
|
- Logits/chosen: -2.3031 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-06 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 256 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| |
|
| 0.576 | 0.4673 | 50 | 0.5725 | 0.8730 | -0.1201 | 0.7318 | 0.9931 | -212.0256 | -223.9073 | -2.4706 | -2.4964 | |
|
| 0.508 | 0.9346 | 100 | 0.5507 | -0.2081 | -1.7933 | 0.7865 | 1.5852 | -228.7584 | -234.7186 | -2.4439 | -2.4604 | |
|
| 0.2512 | 1.4019 | 150 | 0.5608 | 0.2020 | -1.8022 | 0.7865 | 2.0042 | -228.8469 | -230.6172 | -2.2977 | -2.3324 | |
|
| 0.3125 | 1.8692 | 200 | 0.5447 | 0.4722 | -1.5712 | 0.8099 | 2.0434 | -226.5372 | -227.9149 | -2.2994 | -2.3304 | |
|
| 0.1519 | 2.3364 | 250 | 0.5571 | 0.1894 | -2.0352 | 0.8047 | 2.2246 | -231.1766 | -230.7427 | -2.3302 | -2.3582 | |
|
| 0.1708 | 2.8037 | 300 | 0.5571 | 0.0000 | -2.3612 | 0.8073 | 2.3612 | -234.4372 | -232.6371 | -2.2672 | -2.3019 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.20.3 |
|
|