huihui-ai/DeepSeek-V3-Pruned-Coder-411B
This is a pruned version of the deepseek-ai/DeepSeek-V3, reduced from 256 experts to 160 experts. The pruned model is mainly used for code generation.
This is a test validation to see if we can prune the model according to professional requirements and still maintain acceptable performance. The model size has been reduced by about 1/3, and no distortion has occurred.
This allows the model to be pruned according to one's needs.
This pruned model has a total parameter is equivalent to 441B.
We will also try to prune deepseek-ai/DeepSeek-R1.
Use with ollama
You can use huihui_ai/deepseek-v3-pruned directly
ollama run huihui_ai/deepseek-v3-pruned
Use with transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
# Load the model and tokenizer
NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-Pruned-Coder-411B"
quant_config_4 = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_enable_fp32_cpu_offload=True,
)
model = AutoModelForCausalLM.from_pretrained(
NEW_MODEL_ID,
device_map="auto",
trust_remote_code=True,
quantization_config=quant_config_4,
torch_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
# Initialize conversation context
initial_messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
messages = initial_messages.copy() # Copy the initial conversation context
# Enter conversation loop
while True:
# Get user input
user_input = input("User: ").strip() # Strip leading and trailing spaces
# If the user types '/exit', end the conversation
if user_input.lower() == "/exit":
print("Exiting chat.")
break
# If the user types '/clean', reset the conversation context
if user_input.lower() == "/clear":
messages = initial_messages.copy() # Reset conversation context
print("Chat history cleared. Starting a new conversation.")
continue
# If input is empty, prompt the user and continue
if not user_input:
print("Input cannot be empty. Please enter something.")
continue
# Add user input to the conversation
messages.append({"role": "user", "content": user_input})
tokenized_message = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True)
response_token_ids = model.generate(tokenized_message['input_ids'].to("cuda:0"), use_cache=False, pad_token_id=tokenizer.pad_token_id, max_new_tokens=8192)
generated_tokens =response_token_ids[:, len(tokenized_message['input_ids'][0]):]
response = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
# Add the model's response to the conversation
messages.append({"role": "assistant", "content": response})
# Print the model's response
print(f"Response: {response}")
Donation
If you like it, please click 'like' and follow us for more updates.
You can follow x.com/support_huihui to get the latest model information from huihui.ai.
Your donation helps us continue our further development and improvement, a cup of coffee can do it.
- bitcoin:
bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge
- Downloads last month
- 22
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for huihui-ai/DeepSeek-V3-Pruned-Coder-411B
Collection including huihui-ai/DeepSeek-V3-Pruned-Coder-411B
Collection
1 item
•
Updated