huybunn's picture
End of training
c6748a3 verified
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: huybunn-classify-music-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# huybunn-classify-music-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5973
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9694 | 1.0 | 113 | 1.8818 | 0.59 |
| 1.1741 | 2.0 | 226 | 1.3515 | 0.57 |
| 1.0557 | 3.0 | 339 | 1.0305 | 0.68 |
| 0.6765 | 4.0 | 452 | 0.9192 | 0.74 |
| 0.6898 | 5.0 | 565 | 0.6897 | 0.8 |
| 0.4806 | 6.0 | 678 | 0.6725 | 0.79 |
| 0.3361 | 7.0 | 791 | 0.6604 | 0.82 |
| 0.1326 | 8.0 | 904 | 0.6254 | 0.82 |
| 0.1883 | 9.0 | 1017 | 0.5898 | 0.82 |
| 0.1203 | 10.0 | 1130 | 0.5973 | 0.83 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.5.1
- Datasets 3.2.0
- Tokenizers 0.21.0