SentenceTransformer based on NovaSearch/stella_en_400M_v5
This is a sentence-transformers model finetuned from NovaSearch/stella_en_400M_v5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: NovaSearch/stella_en_400M_v5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("icapital-alpha-user/sub-doc-page-page-relevancy-v1")
# Run inference
sentences = [
'have_financial_advisor_zip_code',
'Investment Professional Details\r\nInvestment Professional\r\nFirm Name:\r\nRepresentative Name:\r\nEmail Address: Representative ID:\r\nBranch ID/Firm CRD# (if applicable): Phone Number:\r\nAddress:\r\nOperations Contact Name: Operations Contact Email Address:\r\n☐ Please send all correspondence from the Fund exclusively to my Financial Advisor listed above. Please note that \r\ncertain correspondence will still be sent to the Investor as required by law.\r\n\r\nX\n\n',
'f. The Subscriber further understands that, as a condition of purchase, the Subscriber is required to \r\nexecute a Canadian certificate (the “Canadian Certificate”) in the form appended to this Canadian \r\nAddendum under Appendix A below. The Subscriber acknowledges that the Company and its \r\ncounsel are relying on such executed Canadian Certificate to determine the Subscriber’s eligibility \r\nto purchase the Shares under Applicable Securities Laws. \r\ng. The Subscriber agrees that the representations, warranties, certifications, covenants and \r\nacknowledgements contained herein, including in the Canadian Certificate appended hereto, shall \r\nsurvive any issuance of the Shares to the Subscriber and can continue to be relied on by the \r\nCompany so long as the Subscriber is a holder of Shares until the Subscriber advises the Access \r\nFund that there has been a change in the information in the Canadian Certificate. \r\nh. Upon receipt of this Canadian Addendum, the Subscriber hereby confirms that it has expressly \r\nrequested that all documents evidencing or relating in any way to the sale of the securities described \r\nherein (including for greater certainty any purchase confirmation or any notice) be drawn up in the \r\nEnglish language only. Par la réception de ce document, chaque investisseur canadien confirme \r\npar les présentes qu’il a expressément exigé que tous les documents faisant foi ou se rapportant de \r\nquelque manière que ce soit à la vente des valeurs mobilières décrites aux présentes (incluant, pour \r\nplus de certitude, toute confirmation d’achat ou tout avis) soient rédigés en anglais seulement.\r\nDATED:____________________________ \r\n__________ __________ \r\nInitial Initial \r\n(If joint tenants, both may be required to initial.)\r\n ____________________________________ \r\n____________________________________ \r\n Subscriber’s Address (P.O. Boxes are not \r\n acceptable) \r\n ____________________________________ \r\n Telephone No. \r\n ____________________________________ \r\n Telefax No. \r\n ____________________________________ \r\n Email Address \r\n \n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
json
- Dataset: json
- Size: 94,565 training samples
- Columns:
question
,context
, andscore
- Approximate statistics based on the first 1000 samples:
question context score type string string float details - min: 5 tokens
- mean: 10.88 tokens
- max: 19 tokens
- min: 3 tokens
- mean: 331.96 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.57
- max: 1.0
- Samples:
question context score disregarded_entity
PROPRIETARY AND CONFIDENTIAL
DISREGARDED ENTITY STATUS
1. Is the Investor a disregarded entity6 for purposes of U.S. federal income taxation?
☐ Yes ☐ No
2. If the answer to question 1 is “Yes”, please provide the following information:
Name of the Beneficial Owner:7
____________________________
Taxpayer Identification Number of the Beneficial Owner: ________________________
Tax Classification of the Beneficial Owner (for entities only):8
____________________
Account Type of the Beneficial Owner:9
________________________
Address of the Beneficial Owner: ___________________________
6 A disregarded entity is an eligible entity that is disregarded as separate from its owner for U.S. federal income tax purposes.
Disregarded entities include certain single-member LLCs, grantor trusts, qualified subchapter S subsidiaries (qualified subsidiaries
of an S corporation), and certain qualified foreign entities. The disregarded entity does not file its own U.S. federal income ...1.0
investor_beneficiaries_regulated_entity
PROPRIETARY AND CONFIDENTIAL
B. If the Investor is a corporation, trust, partnership, limited liability company or other
organization, please check the appropriate box in response to each question.
(1) The Investor’s stockholders, partners, members or other beneficial owners, if
any, have no individual discretion as to their participation or non-participation
in the purchase of the Shares and will have no individual discretion as to their
participation or non-participation in particular investments made by the Fund.
☐ True ☐ False
(2) The Investor was not organized or recapitalized (and is not to be recapitalized)
for the specific purpose of acquiring the Shares. For the purposes of the
preceding sentence, “recapitalized” includes, without limitation, new
investments made in the Investor solely for the purpose of financing the
Investor’s acquisition of the Shares and not made pursuant to a prior financial
commitment.
☐ True ☐ False
(3) The Investor has not inves...0.0
section_b_ria_firm
supplements, if any, and that such investor is in a financial position to enable such investor to realize the benefits of such an investment and
to suffer any loss that may occur with respect thereto and (vii) understand that the sale of shares in accordance with the prospectus is subject
to any applicable enhanced standard of conduct, including, but not limited to, the “best interest” standard applicable under Rule 15l-1 under
the Securities Exchange Act of 1934. The undersigned Financial Advisor further represents and certifies that, in connection with this
subscription for Shares, he or she has complied with and has followed all applicable policies and procedures under his or her firm’s existing
Anti- Money Laundering Program and Customer Identification Program.
The RIA is not authorized or permitted to give and represents that it has not given, any information or any representation concerning the
Shares except as set forth in the Prospectus, as amended and supplemented...0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
json
- Dataset: json
- Size: 94,565 evaluation samples
- Columns:
question
,context
, andscore
- Approximate statistics based on the first 1000 samples:
question context score type string string float details - min: 5 tokens
- mean: 11.02 tokens
- max: 19 tokens
- min: 15 tokens
- mean: 332.37 tokens
- max: 512 tokens
- min: 0.0
- mean: 0.57
- max: 1.0
- Samples:
question context score second_signer_address2
ϰ͘ ŽŶƚĂĐƚ /ŶĨŽƌŵĂƚŝŽŶ ;/Ĩ ĚŝĨĨĞƌĞŶƚ ƚŚĂŶ ƉƌŽǀŝĚĞĚ ŝŶ ^ĞĐƚŝŽŶ ϯͿ
ƌĞLJŽƵĂůĂĐŬƐƚŽŶĞ ŵƉůŽLJĞĞŽƌĨĨŝůŝĂƚĞ͕ĂZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌŽƌĂŶ/ŵŵĞĚŝĂƚĞ&ĂŵŝůLJDĞŵďĞƌŽĨĂZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌ͍;ZĞƋƵŝƌĞĚͿ͗
ůĂĐŬƐƚŽŶĞ ŵƉůŽLJĞĞ ůĂĐŬƐƚŽŶĞĨĨŝůŝĂƚĞ Z /dKĨĨŝĐĞƌŽĨŝƌĞĐƚŽƌ /ŵŵĞĚŝĂƚĞ&ĂŵŝůLJDĞŵďĞƌŽĨZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌ EŽƚƉƉůŝĐĂďůĞ
͘ ŽͲ/ŶǀĞƐƚŽƌEĂŵĞ;ŽͲ/ŶǀĞƐƚŽƌͬŽͲdƌƵƐƚĞĞͬŽͲƵƚŚŽƌŝnjĞĚ^ŝŐŶĂƚŽƌLJ/ŶĨŽƌŵĂƚŝŽŶ͕ŝĨĂƉƉůŝĐĂďůĞͿ
EĂŵĞ
^ŽĐŝĂů^ĞĐƵƌŝƚLJEƵŵďĞƌͬdĂdž/ ĂƚĞŽĨŝƌƚŚ;DDͬͬzzzzͿ ĂLJƚŝŵĞWŚŽŶĞEƵŵďĞƌ
ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ
ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ
ZĞƐŝĚĞŶƚŝĂů^ƚƌĞĞƚĚĚƌĞƐƐ
ŝƚLJ ^ƚĂƚĞ ŝƉŽĚĞ
ŵĂŝůĚĚƌĞƐƐ
WůĞĂƐĞƐƉĞĐŝĨLJĐŽƵŶƚƌLJŽĨĐŝƚŝnjĞŶƐŚŝƉ;ZĞƋƵŝƌĞĚͿ͗
͘ ŽͲ/ŶǀĞƐƚŽƌEĂŵĞ;ŽͲ/ŶǀĞƐƚŽƌͬŽͲdƌƵƐƚĞĞͬŽͲƵƚŚŽƌŝnjĞĚ^ŝŐŶĂƚŽƌLJ/ŶĨŽƌŵĂƚŝŽŶ͕ŝĨĂƉƉůŝĐĂďůĞͿ
&ŝƌƐƚEĂŵĞ
^ŽĐŝĂů^ĞĐƵƌŝƚLJEƵŵďĞƌͬdĂdž/ ĂƚĞŽĨŝƌƚŚ;DDͬͬz...1.0
investor_ugma_utma_minors_dob
3. InvestorInformation
A. Investor Name (Investor / Trustee / Executor / Authorized Signatory Information)
Residential street address MUST be provided. See Section 4 if mailing address is different than residential street address
First Name (MI) Last Name
Social Security Number / Tax ID Date of Birth (MM/DD/YYYY) Daytime Phone Number
Residential Street Address
City State Zip Code
Email Address
If you are a non‐U.S. citizen, please specify your country of citizenship (required):
Country of Citizenship
Please specify if you are an employee/officer/director/affiliate of Starwood Capital Group Holdings, L.P., any of its affiliates, or sponsored funds (required): Yes No
Starwood Employee Starwood Officer or Director/Trustee Immediate Family Member of Starwood Officer or Director/Trustee
Starwood Affiliate
B. Co‐Investor Name (Co‐Investor / Co‐Trustee / Co‐Authorized Signatory Information, if applicable)
First Name (MI) Last Name
Social Security Number / Tax ID Date of Bi...0.0
declare_as_assets_of_plan_investor
PROPRIETARY AND CONFIDENTIAL
IN WITNESS WHEREOF, the undersigned executes this Agreement and acknowledges by its
signature below that it (i) has reviewed this Agreement and such additional information it deems appropriate
in connection with its investment in the Fund and (ii) agrees to be bound by the terms hereof on the date
first set forth above.
(Sign here) (Sign here)
Name of Signatory:
Title of Signatory (if applicable):
Date:
(Sign here)
Name of Signatory:
Title of Signatory (if applicable):
Date:
Name of Investor:
(Individual or Entity Name)
Net Subscription Amount into Class I Units* (to be wired to State Street):
$_________________
*No Placement Fee may be charged with respect to Class I Units.
Each prospective Investor is required to complete either the sections titled “For Individuals” or the
sections titled “For Entities”, as applicable’
I am investing as an: ܆ Individual ܆ Entity0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 2warmup_ratio
: 0.03
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.03warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0089 | 100 | 0.2322 | - |
0.0178 | 200 | 0.0938 | - |
0.0267 | 300 | 0.0857 | - |
0.0356 | 400 | 0.0592 | - |
0.0445 | 500 | 0.0684 | - |
0.0534 | 600 | 0.072 | - |
0.0623 | 700 | 0.0649 | - |
0.0712 | 800 | 0.0504 | - |
0.0801 | 900 | 0.0709 | - |
0.0890 | 1000 | 0.0512 | - |
0.0980 | 1100 | 0.0547 | - |
0.1069 | 1200 | 0.0585 | - |
0.1158 | 1300 | 0.0542 | - |
0.1247 | 1400 | 0.0524 | - |
0.1336 | 1500 | 0.0545 | - |
0.1425 | 1600 | 0.0446 | - |
0.1514 | 1700 | 0.0453 | - |
0.1603 | 1800 | 0.0404 | - |
0.1692 | 1900 | 0.0385 | - |
0.1781 | 2000 | 0.042 | - |
0.1870 | 2100 | 0.0409 | - |
0.1959 | 2200 | 0.0394 | - |
0.2048 | 2300 | 0.0398 | - |
0.2137 | 2400 | 0.048 | - |
0.2226 | 2500 | 0.0603 | - |
0.2315 | 2600 | 0.0563 | - |
0.2404 | 2700 | 0.0497 | - |
0.2493 | 2800 | 0.0537 | - |
0.2582 | 2900 | 0.0516 | - |
0.2671 | 3000 | 0.0502 | - |
0.2760 | 3100 | 0.0562 | - |
0.2850 | 3200 | 0.049 | - |
0.2939 | 3300 | 0.0405 | - |
0.3028 | 3400 | 0.0456 | - |
0.3117 | 3500 | 0.0436 | - |
0.3206 | 3600 | 0.0427 | - |
0.3295 | 3700 | 0.0397 | - |
0.3384 | 3800 | 0.039 | - |
0.3473 | 3900 | 0.0301 | - |
0.3562 | 4000 | 0.0356 | 0.0384 |
0.3651 | 4100 | 0.033 | - |
0.3740 | 4200 | 0.0349 | - |
0.3829 | 4300 | 0.0308 | - |
0.3918 | 4400 | 0.03 | - |
0.4007 | 4500 | 0.0353 | - |
0.4096 | 4600 | 0.029 | - |
0.4185 | 4700 | 0.0381 | - |
0.4274 | 4800 | 0.0263 | - |
0.4363 | 4900 | 0.0327 | - |
0.4452 | 5000 | 0.0387 | - |
0.4541 | 5100 | 0.0293 | - |
0.4630 | 5200 | 0.0359 | - |
0.4720 | 5300 | 0.0321 | - |
0.4809 | 5400 | 0.0291 | - |
0.4898 | 5500 | 0.0315 | - |
0.4987 | 5600 | 0.0269 | - |
0.5076 | 5700 | 0.0354 | - |
0.5165 | 5800 | 0.0371 | - |
0.5254 | 5900 | 0.0342 | - |
0.5343 | 6000 | 0.0299 | - |
0.5432 | 6100 | 0.0341 | - |
0.5521 | 6200 | 0.0229 | - |
0.5610 | 6300 | 0.0339 | - |
0.5699 | 6400 | 0.0294 | - |
0.5788 | 6500 | 0.0235 | - |
0.5877 | 6600 | 0.0336 | - |
0.5966 | 6700 | 0.0329 | - |
0.6055 | 6800 | 0.0272 | - |
0.6144 | 6900 | 0.0296 | - |
0.6233 | 7000 | 0.0319 | - |
0.6322 | 7100 | 0.0261 | - |
0.6411 | 7200 | 0.0312 | - |
0.6500 | 7300 | 0.0326 | - |
0.6589 | 7400 | 0.0289 | - |
0.6679 | 7500 | 0.0323 | - |
0.6768 | 7600 | 0.0313 | - |
0.6857 | 7700 | 0.0309 | - |
0.6946 | 7800 | 0.0291 | - |
0.7035 | 7900 | 0.032 | - |
0.7124 | 8000 | 0.027 | 0.0286 |
0.7213 | 8100 | 0.0295 | - |
0.7302 | 8200 | 0.0211 | - |
0.7391 | 8300 | 0.0255 | - |
0.7480 | 8400 | 0.0298 | - |
0.7569 | 8500 | 0.0296 | - |
0.7658 | 8600 | 0.0242 | - |
0.7747 | 8700 | 0.0244 | - |
0.7836 | 8800 | 0.0275 | - |
0.7925 | 8900 | 0.0262 | - |
0.8014 | 9000 | 0.0286 | - |
0.8103 | 9100 | 0.0261 | - |
0.8192 | 9200 | 0.0256 | - |
0.8281 | 9300 | 0.0245 | - |
0.8370 | 9400 | 0.0292 | - |
0.8459 | 9500 | 0.0276 | - |
0.8549 | 9600 | 0.0246 | - |
0.8638 | 9700 | 0.0317 | - |
0.8727 | 9800 | 0.029 | - |
0.8816 | 9900 | 0.0291 | - |
0.8905 | 10000 | 0.0313 | - |
0.8994 | 10100 | 0.0251 | - |
0.9083 | 10200 | 0.0271 | - |
0.9172 | 10300 | 0.0257 | - |
0.9261 | 10400 | 0.0279 | - |
0.9350 | 10500 | 0.0322 | - |
0.9439 | 10600 | 0.0299 | - |
0.9528 | 10700 | 0.026 | - |
0.9617 | 10800 | 0.026 | - |
0.9706 | 10900 | 0.0249 | - |
0.9795 | 11000 | 0.0229 | - |
0.9884 | 11100 | 0.0273 | - |
0.9973 | 11200 | 0.031 | - |
1.0062 | 11300 | 0.0287 | - |
1.0151 | 11400 | 0.0264 | - |
1.0240 | 11500 | 0.0267 | - |
1.0329 | 11600 | 0.0208 | - |
1.0419 | 11700 | 0.0198 | - |
1.0508 | 11800 | 0.0224 | - |
1.0597 | 11900 | 0.019 | - |
1.0686 | 12000 | 0.0274 | 0.0269 |
1.0775 | 12100 | 0.0262 | - |
1.0864 | 12200 | 0.0293 | - |
1.0953 | 12300 | 0.0259 | - |
1.1042 | 12400 | 0.0239 | - |
1.1131 | 12500 | 0.0247 | - |
1.1220 | 12600 | 0.025 | - |
1.1309 | 12700 | 0.0253 | - |
1.1398 | 12800 | 0.0201 | - |
1.1487 | 12900 | 0.0207 | - |
1.1576 | 13000 | 0.0258 | - |
1.1665 | 13100 | 0.0277 | - |
1.1754 | 13200 | 0.0254 | - |
1.1843 | 13300 | 0.0248 | - |
1.1932 | 13400 | 0.0218 | - |
1.2021 | 13500 | 0.0238 | - |
1.2110 | 13600 | 0.0243 | - |
1.2199 | 13700 | 0.0249 | - |
1.2289 | 13800 | 0.0203 | - |
1.2378 | 13900 | 0.026 | - |
1.2467 | 14000 | 0.0281 | - |
1.2556 | 14100 | 0.0273 | - |
1.2645 | 14200 | 0.0228 | - |
1.2734 | 14300 | 0.0221 | - |
1.2823 | 14400 | 0.0239 | - |
1.2912 | 14500 | 0.0197 | - |
1.3001 | 14600 | 0.0255 | - |
1.3090 | 14700 | 0.0238 | - |
1.3179 | 14800 | 0.0195 | - |
1.3268 | 14900 | 0.0206 | - |
1.3357 | 15000 | 0.0212 | - |
1.3446 | 15100 | 0.0273 | - |
1.3535 | 15200 | 0.0233 | - |
1.3624 | 15300 | 0.0254 | - |
1.3713 | 15400 | 0.0219 | - |
1.3802 | 15500 | 0.0205 | - |
1.3891 | 15600 | 0.0196 | - |
1.3980 | 15700 | 0.0203 | - |
1.4069 | 15800 | 0.0192 | - |
1.4159 | 15900 | 0.0296 | - |
1.4248 | 16000 | 0.0186 | 0.0246 |
1.4337 | 16100 | 0.0246 | - |
1.4426 | 16200 | 0.0198 | - |
1.4515 | 16300 | 0.0226 | - |
1.4604 | 16400 | 0.0201 | - |
1.4693 | 16500 | 0.0162 | - |
1.4782 | 16600 | 0.0184 | - |
1.4871 | 16700 | 0.0226 | - |
1.4960 | 16800 | 0.028 | - |
1.5049 | 16900 | 0.0204 | - |
1.5138 | 17000 | 0.0249 | - |
1.5227 | 17100 | 0.0176 | - |
1.5316 | 17200 | 0.0221 | - |
1.5405 | 17300 | 0.0247 | - |
1.5494 | 17400 | 0.0193 | - |
1.5583 | 17500 | 0.0203 | - |
1.5672 | 17600 | 0.0183 | - |
1.5761 | 17700 | 0.0202 | - |
1.5850 | 17800 | 0.0202 | - |
1.5939 | 17900 | 0.0248 | - |
1.6028 | 18000 | 0.0195 | - |
1.6118 | 18100 | 0.0168 | - |
1.6207 | 18200 | 0.0204 | - |
1.6296 | 18300 | 0.0256 | - |
1.6385 | 18400 | 0.0249 | - |
1.6474 | 18500 | 0.0226 | - |
1.6563 | 18600 | 0.018 | - |
1.6652 | 18700 | 0.0205 | - |
1.6741 | 18800 | 0.0317 | - |
1.6830 | 18900 | 0.0149 | - |
1.6919 | 19000 | 0.0228 | - |
1.7008 | 19100 | 0.0184 | - |
1.7097 | 19200 | 0.0214 | - |
1.7186 | 19300 | 0.0184 | - |
1.7275 | 19400 | 0.0199 | - |
1.7364 | 19500 | 0.0221 | - |
1.7453 | 19600 | 0.0217 | - |
1.7542 | 19700 | 0.0266 | - |
1.7631 | 19800 | 0.0214 | - |
1.7720 | 19900 | 0.0189 | - |
1.7809 | 20000 | 0.0232 | 0.0229 |
1.7898 | 20100 | 0.0174 | - |
1.7988 | 20200 | 0.0177 | - |
1.8077 | 20300 | 0.0209 | - |
1.8166 | 20400 | 0.0228 | - |
1.8255 | 20500 | 0.0226 | - |
1.8344 | 20600 | 0.0182 | - |
1.8433 | 20700 | 0.0232 | - |
1.8522 | 20800 | 0.0233 | - |
1.8611 | 20900 | 0.0245 | - |
1.8700 | 21000 | 0.0296 | - |
1.8789 | 21100 | 0.022 | - |
1.8878 | 21200 | 0.0228 | - |
1.8967 | 21300 | 0.0181 | - |
1.9056 | 21400 | 0.0185 | - |
1.9145 | 21500 | 0.0203 | - |
1.9234 | 21600 | 0.0202 | - |
1.9323 | 21700 | 0.0271 | - |
1.9412 | 21800 | 0.0218 | - |
1.9501 | 21900 | 0.0211 | - |
1.9590 | 22000 | 0.019 | - |
1.9679 | 22100 | 0.0202 | - |
1.9768 | 22200 | 0.0162 | - |
1.9858 | 22300 | 0.0227 | - |
1.9947 | 22400 | 0.024 | - |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.4.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.4.1
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for icapital-alpha-user/sub-doc-page-page-relevancy-v1
Base model
NovaSearch/stella_en_400M_v5