SentenceTransformer based on NovaSearch/stella_en_400M_v5

This is a sentence-transformers model finetuned from NovaSearch/stella_en_400M_v5 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: NovaSearch/stella_en_400M_v5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: NewModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 1024, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("icapital-alpha-user/sub-doc-page-page-relevancy-v1")
# Run inference
sentences = [
    'have_financial_advisor_zip_code',
    'Investment Professional Details\r\nInvestment Professional\r\nFirm Name:\r\nRepresentative Name:\r\nEmail Address: Representative ID:\r\nBranch ID/Firm CRD# (if applicable): Phone Number:\r\nAddress:\r\nOperations Contact Name: Operations Contact Email Address:\r\n☐ Please send all correspondence from the Fund exclusively to my Financial Advisor listed above. Please note that \r\ncertain correspondence will still be sent to the Investor as required by law.\r\n\r\nX\n\n',
    'f. The Subscriber further understands that, as a condition of purchase, the Subscriber is required to \r\nexecute a Canadian certificate (the “Canadian Certificate”) in the form appended to this Canadian \r\nAddendum under Appendix A below. The Subscriber acknowledges that the Company and its \r\ncounsel are relying on such executed Canadian Certificate to determine the Subscriber’s eligibility \r\nto purchase the Shares under Applicable Securities Laws. \r\ng. The Subscriber agrees that the representations, warranties, certifications, covenants and \r\nacknowledgements contained herein, including in the Canadian Certificate appended hereto, shall \r\nsurvive any issuance of the Shares to the Subscriber and can continue to be relied on by the \r\nCompany so long as the Subscriber is a holder of Shares until the Subscriber advises the Access \r\nFund that there has been a change in the information in the Canadian Certificate. \r\nh. Upon receipt of this Canadian Addendum, the Subscriber hereby confirms that it has expressly \r\nrequested that all documents evidencing or relating in any way to the sale of the securities described \r\nherein (including for greater certainty any purchase confirmation or any notice) be drawn up in the \r\nEnglish language only. Par la réception de ce document, chaque investisseur canadien confirme \r\npar les présentes qu’il a expressément exigé que tous les documents faisant foi ou se rapportant de \r\nquelque manière que ce soit à la vente des valeurs mobilières décrites aux présentes (incluant, pour \r\nplus de certitude, toute confirmation d’achat ou tout avis) soient rédigés en anglais seulement.\r\nDATED:____________________________ \r\n__________ __________ \r\nInitial Initial \r\n(If joint tenants, both may be required to initial.)\r\n ____________________________________ \r\n____________________________________ \r\n Subscriber’s Address (P.O. Boxes are not \r\n acceptable) \r\n ____________________________________ \r\n Telephone No. \r\n ____________________________________ \r\n Telefax No. \r\n ____________________________________ \r\n Email Address \r\n \n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 94,565 training samples
  • Columns: question, context, and score
  • Approximate statistics based on the first 1000 samples:
    question context score
    type string string float
    details
    • min: 5 tokens
    • mean: 10.88 tokens
    • max: 19 tokens
    • min: 3 tokens
    • mean: 331.96 tokens
    • max: 512 tokens
    • min: 0.0
    • mean: 0.57
    • max: 1.0
  • Samples:
    question context score
    disregarded_entity PROPRIETARY AND CONFIDENTIAL

    DISREGARDED ENTITY STATUS

    1. Is the Investor a disregarded entity6 for purposes of U.S. federal income taxation?

    ☐ Yes ☐ No

    2. If the answer to question 1 is “Yes”, please provide the following information:

    Name of the Beneficial Owner:7

    ____________________________

    Taxpayer Identification Number of the Beneficial Owner: ________________________

    Tax Classification of the Beneficial Owner (for entities only):8

    ____________________

    Account Type of the Beneficial Owner:9

    ________________________

    Address of the Beneficial Owner: ___________________________

    6 A disregarded entity is an eligible entity that is disregarded as separate from its owner for U.S. federal income tax purposes.

    Disregarded entities include certain single-member LLCs, grantor trusts, qualified subchapter S subsidiaries (qualified subsidiaries

    of an S corporation), and certain qualified foreign entities. The disregarded entity does not file its own U.S. federal income ...
    1.0
    investor_beneficiaries_regulated_entity PROPRIETARY AND CONFIDENTIAL

    B. If the Investor is a corporation, trust, partnership, limited liability company or other

    organization, please check the appropriate box in response to each question.

    (1) The Investor’s stockholders, partners, members or other beneficial owners, if

    any, have no individual discretion as to their participation or non-participation

    in the purchase of the Shares and will have no individual discretion as to their

    participation or non-participation in particular investments made by the Fund.

    ☐ True ☐ False

    (2) The Investor was not organized or recapitalized (and is not to be recapitalized)

    for the specific purpose of acquiring the Shares. For the purposes of the

    preceding sentence, “recapitalized” includes, without limitation, new

    investments made in the Investor solely for the purpose of financing the

    Investor’s acquisition of the Shares and not made pursuant to a prior financial

    commitment.

    ☐ True ☐ False

    (3) The Investor has not inves...
    0.0
    section_b_ria_firm supplements, if any, and that such investor is in a financial position to enable such investor to realize the benefits of such an investment and

    to suffer any loss that may occur with respect thereto and (vii) understand that the sale of shares in accordance with the prospectus is subject

    to any applicable enhanced standard of conduct, including, but not limited to, the “best interest” standard applicable under Rule 15l-1 under

    the Securities Exchange Act of 1934. The undersigned Financial Advisor further represents and certifies that, in connection with this

    subscription for Shares, he or she has complied with and has followed all applicable policies and procedures under his or her firm’s existing

    Anti- Money Laundering Program and Customer Identification Program.

    The RIA is not authorized or permitted to give and represents that it has not given, any information or any representation concerning the

    Shares except as set forth in the Prospectus, as amended and supplemented...
    0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

json

  • Dataset: json
  • Size: 94,565 evaluation samples
  • Columns: question, context, and score
  • Approximate statistics based on the first 1000 samples:
    question context score
    type string string float
    details
    • min: 5 tokens
    • mean: 11.02 tokens
    • max: 19 tokens
    • min: 15 tokens
    • mean: 332.37 tokens
    • max: 512 tokens
    • min: 0.0
    • mean: 0.57
    • max: 1.0
  • Samples:
    question context score
    second_signer_address2 ϰ͘ ŽŶƚĂĐƚ /ŶĨŽƌŵĂƚŝŽŶ ;/Ĩ ĚŝĨĨĞƌĞŶƚ ƚŚĂŶ ƉƌŽǀŝĚĞĚ ŝŶ ^ĞĐƚŝŽŶ ϯͿ

    ƌĞLJŽƵĂůĂĐŬƐƚŽŶĞ ŵƉůŽLJĞĞŽƌĨĨŝůŝĂƚĞ͕ĂZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌŽƌĂŶ/ŵŵĞĚŝĂƚĞ&ĂŵŝůLJDĞŵďĞƌŽĨĂZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌ͍;ZĞƋƵŝƌĞĚͿ͗

    ůĂĐŬƐƚŽŶĞ ŵƉůŽLJĞĞ ůĂĐŬƐƚŽŶĞĨĨŝůŝĂƚĞ Z /dKĨĨŝĐĞƌŽĨŝƌĞĐƚŽƌ /ŵŵĞĚŝĂƚĞ&ĂŵŝůLJDĞŵďĞƌŽĨZ /dKĨĨŝĐĞƌŽƌŝƌĞĐƚŽƌ EŽƚƉƉůŝĐĂďůĞ

    ͘ ŽͲ/ŶǀĞƐƚŽƌEĂŵĞ;ŽͲ/ŶǀĞƐƚŽƌͬŽͲdƌƵƐƚĞĞͬŽͲƵƚŚŽƌŝnjĞĚ^ŝŐŶĂƚŽƌLJ/ŶĨŽƌŵĂƚŝŽŶ͕ŝĨĂƉƉůŝĐĂďůĞͿ

    EĂŵĞ

    ^ŽĐŝĂů^ĞĐƵƌŝƚLJEƵŵďĞƌͬdĂdž/ ĂƚĞŽĨŝƌƚŚ;DDͬͬzzzzͿ ĂLJƚŝŵĞWŚŽŶĞEƵŵďĞƌ

    ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ

    ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ

    ZĞƐŝĚĞŶƚŝĂů^ƚƌĞĞƚĚĚƌĞƐƐ

    ŝƚLJ ^ƚĂƚĞ ŝƉŽĚĞ

     ŵĂŝůĚĚƌĞƐƐ

    WůĞĂƐĞƐƉĞĐŝĨLJĐŽƵŶƚƌLJŽĨĐŝƚŝnjĞŶƐŚŝƉ;ZĞƋƵŝƌĞĚͿ͗

    ͘ ŽͲ/ŶǀĞƐƚŽƌEĂŵĞ;ŽͲ/ŶǀĞƐƚŽƌͬŽͲdƌƵƐƚĞĞͬŽͲƵƚŚŽƌŝnjĞĚ^ŝŐŶĂƚŽƌLJ/ŶĨŽƌŵĂƚŝŽŶ͕ŝĨĂƉƉůŝĐĂďůĞͿ

    &ŝƌƐƚEĂŵĞ

    ^ŽĐŝĂů^ĞĐƵƌŝƚLJEƵŵďĞƌͬdĂdž/ ĂƚĞŽĨŝƌƚŚ;DDͬͬz...
    1.0
    investor_ugma_utma_minors_dob 3. InvestorInformation

    A. Investor Name (Investor / Trustee / Executor / Authorized Signatory Information)

    Residential street address MUST be provided. See Section 4 if mailing address is different than residential street address

    First Name (MI) Last Name

    Social Security Number / Tax ID Date of Birth (MM/DD/YYYY) Daytime Phone Number

    Residential Street Address

    City State Zip Code

    Email Address

    If you are a non‐U.S. citizen, please specify your country of citizenship (required):

    Country of Citizenship

    Please specify if you are an employee/officer/director/affiliate of Starwood Capital Group Holdings, L.P., any of its affiliates, or sponsored funds (required): Yes No

    Starwood Employee Starwood Officer or Director/Trustee Immediate Family Member of Starwood Officer or Director/Trustee

    Starwood Affiliate

    B. Co‐Investor Name (Co‐Investor / Co‐Trustee / Co‐Authorized Signatory Information, if applicable)

    First Name (MI) Last Name

    Social Security Number / Tax ID Date of Bi...
    0.0
    declare_as_assets_of_plan_investor PROPRIETARY AND CONFIDENTIAL

    IN WITNESS WHEREOF, the undersigned executes this Agreement and acknowledges by its

    signature below that it (i) has reviewed this Agreement and such additional information it deems appropriate

    in connection with its investment in the Fund and (ii) agrees to be bound by the terms hereof on the date

    first set forth above.

    (Sign here) (Sign here)

    Name of Signatory:

    Title of Signatory (if applicable):

    Date:

    (Sign here)

    Name of Signatory:

    Title of Signatory (if applicable):

    Date:

    Name of Investor:

    (Individual or Entity Name)

    Net Subscription Amount into Class I Units* (to be wired to State Street):

    $_________________

    *No Placement Fee may be charged with respect to Class I Units.

    Each prospective Investor is required to complete either the sections titled “For Individuals” or the

    sections titled “For Entities”, as applicable’

    I am investing as an: ܆ Individual ܆ Entity

    



    0.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.03

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.03
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss
0.0089 100 0.2322 -
0.0178 200 0.0938 -
0.0267 300 0.0857 -
0.0356 400 0.0592 -
0.0445 500 0.0684 -
0.0534 600 0.072 -
0.0623 700 0.0649 -
0.0712 800 0.0504 -
0.0801 900 0.0709 -
0.0890 1000 0.0512 -
0.0980 1100 0.0547 -
0.1069 1200 0.0585 -
0.1158 1300 0.0542 -
0.1247 1400 0.0524 -
0.1336 1500 0.0545 -
0.1425 1600 0.0446 -
0.1514 1700 0.0453 -
0.1603 1800 0.0404 -
0.1692 1900 0.0385 -
0.1781 2000 0.042 -
0.1870 2100 0.0409 -
0.1959 2200 0.0394 -
0.2048 2300 0.0398 -
0.2137 2400 0.048 -
0.2226 2500 0.0603 -
0.2315 2600 0.0563 -
0.2404 2700 0.0497 -
0.2493 2800 0.0537 -
0.2582 2900 0.0516 -
0.2671 3000 0.0502 -
0.2760 3100 0.0562 -
0.2850 3200 0.049 -
0.2939 3300 0.0405 -
0.3028 3400 0.0456 -
0.3117 3500 0.0436 -
0.3206 3600 0.0427 -
0.3295 3700 0.0397 -
0.3384 3800 0.039 -
0.3473 3900 0.0301 -
0.3562 4000 0.0356 0.0384
0.3651 4100 0.033 -
0.3740 4200 0.0349 -
0.3829 4300 0.0308 -
0.3918 4400 0.03 -
0.4007 4500 0.0353 -
0.4096 4600 0.029 -
0.4185 4700 0.0381 -
0.4274 4800 0.0263 -
0.4363 4900 0.0327 -
0.4452 5000 0.0387 -
0.4541 5100 0.0293 -
0.4630 5200 0.0359 -
0.4720 5300 0.0321 -
0.4809 5400 0.0291 -
0.4898 5500 0.0315 -
0.4987 5600 0.0269 -
0.5076 5700 0.0354 -
0.5165 5800 0.0371 -
0.5254 5900 0.0342 -
0.5343 6000 0.0299 -
0.5432 6100 0.0341 -
0.5521 6200 0.0229 -
0.5610 6300 0.0339 -
0.5699 6400 0.0294 -
0.5788 6500 0.0235 -
0.5877 6600 0.0336 -
0.5966 6700 0.0329 -
0.6055 6800 0.0272 -
0.6144 6900 0.0296 -
0.6233 7000 0.0319 -
0.6322 7100 0.0261 -
0.6411 7200 0.0312 -
0.6500 7300 0.0326 -
0.6589 7400 0.0289 -
0.6679 7500 0.0323 -
0.6768 7600 0.0313 -
0.6857 7700 0.0309 -
0.6946 7800 0.0291 -
0.7035 7900 0.032 -
0.7124 8000 0.027 0.0286
0.7213 8100 0.0295 -
0.7302 8200 0.0211 -
0.7391 8300 0.0255 -
0.7480 8400 0.0298 -
0.7569 8500 0.0296 -
0.7658 8600 0.0242 -
0.7747 8700 0.0244 -
0.7836 8800 0.0275 -
0.7925 8900 0.0262 -
0.8014 9000 0.0286 -
0.8103 9100 0.0261 -
0.8192 9200 0.0256 -
0.8281 9300 0.0245 -
0.8370 9400 0.0292 -
0.8459 9500 0.0276 -
0.8549 9600 0.0246 -
0.8638 9700 0.0317 -
0.8727 9800 0.029 -
0.8816 9900 0.0291 -
0.8905 10000 0.0313 -
0.8994 10100 0.0251 -
0.9083 10200 0.0271 -
0.9172 10300 0.0257 -
0.9261 10400 0.0279 -
0.9350 10500 0.0322 -
0.9439 10600 0.0299 -
0.9528 10700 0.026 -
0.9617 10800 0.026 -
0.9706 10900 0.0249 -
0.9795 11000 0.0229 -
0.9884 11100 0.0273 -
0.9973 11200 0.031 -
1.0062 11300 0.0287 -
1.0151 11400 0.0264 -
1.0240 11500 0.0267 -
1.0329 11600 0.0208 -
1.0419 11700 0.0198 -
1.0508 11800 0.0224 -
1.0597 11900 0.019 -
1.0686 12000 0.0274 0.0269
1.0775 12100 0.0262 -
1.0864 12200 0.0293 -
1.0953 12300 0.0259 -
1.1042 12400 0.0239 -
1.1131 12500 0.0247 -
1.1220 12600 0.025 -
1.1309 12700 0.0253 -
1.1398 12800 0.0201 -
1.1487 12900 0.0207 -
1.1576 13000 0.0258 -
1.1665 13100 0.0277 -
1.1754 13200 0.0254 -
1.1843 13300 0.0248 -
1.1932 13400 0.0218 -
1.2021 13500 0.0238 -
1.2110 13600 0.0243 -
1.2199 13700 0.0249 -
1.2289 13800 0.0203 -
1.2378 13900 0.026 -
1.2467 14000 0.0281 -
1.2556 14100 0.0273 -
1.2645 14200 0.0228 -
1.2734 14300 0.0221 -
1.2823 14400 0.0239 -
1.2912 14500 0.0197 -
1.3001 14600 0.0255 -
1.3090 14700 0.0238 -
1.3179 14800 0.0195 -
1.3268 14900 0.0206 -
1.3357 15000 0.0212 -
1.3446 15100 0.0273 -
1.3535 15200 0.0233 -
1.3624 15300 0.0254 -
1.3713 15400 0.0219 -
1.3802 15500 0.0205 -
1.3891 15600 0.0196 -
1.3980 15700 0.0203 -
1.4069 15800 0.0192 -
1.4159 15900 0.0296 -
1.4248 16000 0.0186 0.0246
1.4337 16100 0.0246 -
1.4426 16200 0.0198 -
1.4515 16300 0.0226 -
1.4604 16400 0.0201 -
1.4693 16500 0.0162 -
1.4782 16600 0.0184 -
1.4871 16700 0.0226 -
1.4960 16800 0.028 -
1.5049 16900 0.0204 -
1.5138 17000 0.0249 -
1.5227 17100 0.0176 -
1.5316 17200 0.0221 -
1.5405 17300 0.0247 -
1.5494 17400 0.0193 -
1.5583 17500 0.0203 -
1.5672 17600 0.0183 -
1.5761 17700 0.0202 -
1.5850 17800 0.0202 -
1.5939 17900 0.0248 -
1.6028 18000 0.0195 -
1.6118 18100 0.0168 -
1.6207 18200 0.0204 -
1.6296 18300 0.0256 -
1.6385 18400 0.0249 -
1.6474 18500 0.0226 -
1.6563 18600 0.018 -
1.6652 18700 0.0205 -
1.6741 18800 0.0317 -
1.6830 18900 0.0149 -
1.6919 19000 0.0228 -
1.7008 19100 0.0184 -
1.7097 19200 0.0214 -
1.7186 19300 0.0184 -
1.7275 19400 0.0199 -
1.7364 19500 0.0221 -
1.7453 19600 0.0217 -
1.7542 19700 0.0266 -
1.7631 19800 0.0214 -
1.7720 19900 0.0189 -
1.7809 20000 0.0232 0.0229
1.7898 20100 0.0174 -
1.7988 20200 0.0177 -
1.8077 20300 0.0209 -
1.8166 20400 0.0228 -
1.8255 20500 0.0226 -
1.8344 20600 0.0182 -
1.8433 20700 0.0232 -
1.8522 20800 0.0233 -
1.8611 20900 0.0245 -
1.8700 21000 0.0296 -
1.8789 21100 0.022 -
1.8878 21200 0.0228 -
1.8967 21300 0.0181 -
1.9056 21400 0.0185 -
1.9145 21500 0.0203 -
1.9234 21600 0.0202 -
1.9323 21700 0.0271 -
1.9412 21800 0.0218 -
1.9501 21900 0.0211 -
1.9590 22000 0.019 -
1.9679 22100 0.0202 -
1.9768 22200 0.0162 -
1.9858 22300 0.0227 -
1.9947 22400 0.024 -

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.4.1
  • Transformers: 4.46.3
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.4.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
5
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for icapital-alpha-user/sub-doc-page-page-relevancy-v1

Finetuned
(10)
this model