NamBert-for-csc

Open In Colab

Official model for the paper "Unveiling the Impact of Multimodal Features on Chinese Spelling Correction: From Analysis to Design".

Github: https://github.com/iioSnail/NamBert

The sentence-level performance of the model in SIGHAN datasets is as follows:

Detect-Acc Detect-Precision Detect-Recall Detect-F1 Correct-Acc Correct-Precision Correct-Recall Correct-F1
Sighan2013 82.70 87.72 82.39 84.97 81.60 86.51 81.26 83.80
Sighan2014 79.76 69.03 75.00 71.89 79.10 67.79 73.65 70.60
Sighan2015 86.18 77.52 85.40 81.27 85.73 76.68 84.47 80.39

Usage

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("iioSnail/NamBert-for-csc", trust_remote_code=True)
model = AutoModel.from_pretrained("iioSnail/NamBert-for-csc", trust_remote_code=True)

inputs = tokenizer("我喜换吃平果,逆呢?", return_tensors='pt')
logits = model(**inputs).logits

target_ids = logits.argmax(-1)
target_ids = tokenizer.restore_ids(target_ids, inputs['input_ids'])

print(''.join(tokenizer.convert_ids_to_tokens(target_ids[0, 1:-1])))

Or

from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("iioSnail/NamBert-for-csc", trust_remote_code=True)
model = AutoModel.from_pretrained("iioSnail/NamBert-for-csc", trust_remote_code=True)

model = model.to(device)
model = model.eval()
model.set_tokenizer(tokenizer)

model.predict("我是炼习时长两念半的个人练习生菜徐坤")
model.predict(["我是炼习时长两念半的个人练习生菜徐坤", "喜欢场跳rap篮球!!"])
Downloads last month
143
Safetensors
Model size
121M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support