itskavya's picture
Upload tokenizer
d18987f verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-small
tags:
  - automatic-speech-recognition
  - arabic
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: Whisper Small Informal Arabic
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Informal Arabic
          type: audiofolder
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 35.868522072936656
            name: Wer

Whisper Small Informal Arabic

This model is a fine-tuned version of openai/whisper-small on the Informal Arabic dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7928
  • Wer: 35.8685
  • Cer: 12.0407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.0019 26.3158 1000 0.6358 37.4280 12.6300
0.0004 52.6316 2000 0.6972 35.4726 12.0947
0.0002 78.9474 3000 0.7480 35.8925 12.1017
0.0001 105.2632 4000 0.7751 35.9165 12.0853
0.0001 131.5789 5000 0.7928 35.8685 12.0407

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1