CPALL-Stock-Trend-Prediction-category-filter-Wangchanberta-APR
This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0950
- Accuracy: 0.4635
- Precision: 0.2149
- Recall: 0.4635
- F1: 0.2936
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.1227 | 1.0 | 548 | 1.1233 | 0.3241 | 0.3829 | 0.3241 | 0.3005 |
1.1154 | 2.0 | 1096 | 1.0935 | 0.3739 | 0.3871 | 0.3739 | 0.3790 |
1.1113 | 3.0 | 1644 | 1.1018 | 0.4633 | 0.2148 | 0.4633 | 0.2936 |
1.1073 | 4.0 | 2192 | 1.0677 | 0.3397 | 0.1154 | 0.3397 | 0.1723 |
1.1076 | 5.0 | 2740 | 1.0728 | 0.4635 | 0.2149 | 0.4635 | 0.2936 |
1.1061 | 6.0 | 3288 | 1.1124 | 0.3397 | 0.1154 | 0.3397 | 0.1723 |
1.104 | 7.0 | 3836 | 1.1173 | 0.1968 | 0.0387 | 0.1968 | 0.0647 |
1.1059 | 8.0 | 4384 | 1.1117 | 0.3397 | 0.1154 | 0.3397 | 0.1723 |
1.1033 | 9.0 | 4932 | 1.0900 | 0.4635 | 0.2149 | 0.4635 | 0.2936 |
1.1059 | 10.0 | 5480 | 1.0950 | 0.4635 | 0.2149 | 0.4635 | 0.2936 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support