results
This model is a fine-tuned version of airesearch/wangchanberta-base-att-spm-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3038
- Accuracy: 0.9587
- Precision: 0.9594
- Recall: 0.9587
- F1: 0.9589
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.5153 | 1.0 | 1154 | 0.5267 | 0.7811 | 0.8214 | 0.7811 | 0.7825 |
0.2142 | 2.0 | 2308 | 0.2754 | 0.9223 | 0.9285 | 0.9223 | 0.9233 |
0.1629 | 3.0 | 3462 | 0.3064 | 0.9242 | 0.9337 | 0.9242 | 0.9258 |
0.0114 | 4.0 | 4616 | 0.2063 | 0.9546 | 0.9562 | 0.9546 | 0.9547 |
0.0168 | 5.0 | 5770 | 0.2266 | 0.9521 | 0.9540 | 0.9521 | 0.9523 |
0.0166 | 6.0 | 6924 | 0.2503 | 0.9543 | 0.9556 | 0.9543 | 0.9544 |
0.0716 | 7.0 | 8078 | 0.2382 | 0.9607 | 0.9618 | 0.9607 | 0.9609 |
0.0006 | 8.0 | 9232 | 0.2849 | 0.9536 | 0.9551 | 0.9536 | 0.9538 |
0.0001 | 9.0 | 10386 | 0.2501 | 0.9641 | 0.9649 | 0.9641 | 0.9642 |
0.0005 | 10.0 | 11540 | 0.2606 | 0.9610 | 0.9619 | 0.9610 | 0.9611 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 10
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support