Lunit ONCO FM
Lunit ONCO FM is a foundation model for computational pathology developed by Lunit, optimized for extracting informative representations from both H&E and IHC stained whole slide images (WSIs). The model is pre-trained on 50,000 WSIs at multiple scales, enabling strong performance across a variety of downstream tasks in oncology and histopathology.
π¦ Repository
- Hugging Face Hub:
jeffkang-lunit/lunit-onco-fm
π§ Model Details
- Architecture:
vit_huge_patch14_224
- Parameters: ~632M
- Training Data: 50K WSIs (H&E + IHC)
- Input Resolution: 392x392
- MPP Scales: [0.1944, 0.3888, 0.7776, 1.5552]
π§ͺ Feature Extraction Example
from huggingface_hub import login
import torch
import timm
from torchvision import transforms
# Authenticate with Hugging Face
login()
# Load the model
model = timm.create_model(
"hf_hub:jeffkang-lunit/lunit-onco-fm",
pretrained=True,
act_layer=torch.nn.SiLU,
mlp_layer=timm.layers.SwiGLUPacked,
norm_layer=functools.partial(torch.nn.RMSNorm, eps=1e-6),
)
model.to("cuda")
model.eval()
# Image preprocessing
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(
mean=(0.7401,0.6559,0.7649),
std=(0.2115,0.2564,0.1988),
),
])
# Dummy input
input = torch.rand(3, 224, 224)
input = transforms.ToPILImage()(input)
# Feature extraction
with torch.inference_mode():
features = model(transform(input).unsqueeze(0).to("cuda"))
class_token = features[:, 0] # size: 1 x 1280
patch_tokens = features[:, 5:] # size: 1 x 256 x 1280, tokens 1-4 are register tokens so we ignore those
BibTeX entry and citation info.
@software{ragdollv2.1,
author = {Mingu Kang, Jack Shi, Jonghyun Lee, Sungyoon Kim, Aisha Urooj, Jeongun Ryu, Sergio Pereira, Donggeun Yoo},
title = {vision-ssl-squad},
url = {https://lunit.atlassian.net/wiki/spaces/AF/pages/3592290353/VisionSSL},
year = {2025},
}
- Downloads last month
- 307
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support