Phi4-mini model quantized with torchao int4 weight only quantization with gemlite kernels, by PyTorch team.
Installation
pip install transformers
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install [email protected]:EleutherAI/lm-evaluation-harness.git
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
pip install git+https://github.com/mobiusml/gemlite/
Quantization Recipe
We used following code to get the quantized model:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
model_id = "microsoft/Phi-4-mini-instruct"
from torchao.quantization import GemliteUIntXWeightOnlyConfig
quant_config = GemliteUIntXWeightOnlyConfig()
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Push to hub
USER_ID = "YOUR_USER_ID"
save_to = f"{USER_ID}/{model_id}-int4wo-gemlite"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)
# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
# Local Benchmark
import torch.utils.benchmark as benchmark
from torchao.utils import benchmark_model
import torchao
def benchmark_fn(f, *args, **kwargs):
# Manual warmup
for _ in range(2):
f(*args, **kwargs)
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=torch.get_num_threads(),
)
return f"{(t0.blocked_autorange().mean):.3f}"
torchao.quantization.utils.recommended_inductor_config_setter()
quantized_model = torch.compile(quantized_model, mode="max-autotune")
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
Model Quality
We rely on lm-evaluation-harness to evaluate the quality of the quantized model.
Installing the nightly version to get most recent updates
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
baseline
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
int4wo-gemlite
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-gemlite --tasks hellaswag --device cuda:0 --batch_size 8
TODO: more complete eval results
Benchmark | ||
---|---|---|
Phi-4 mini-Ins | phi4-mini-int4wo-gemlite | |
Popular aggregated benchmark | ||
Reasoning | ||
HellaSwag | 54.57 | 53.51 |
Multilingual | ||
Math | ||
Overall | TODO | TODO |
Model Performance
Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm. For batch size N, please see our gemlite checkpoint.
Download vllm source code and install vllm
git clone [email protected]:vllm-project/vllm.git
VLLM_USE_PRECOMPILED=1 pip install .
Download dataset
Download sharegpt dataset: wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
benchmark_latency
Run the following under vllm
source code root folder:
baseline
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
int4wo-gemlite
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-int4wo-gemlite --batch-size 1
benchmark_serving
We also benchmarked the throughput in a serving environment.
Run the following under vllm
source code root folder:
baseline
Server:
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
Client:
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
int4wo-gemlite
Server:
vllm serve jerryzh168/phi4-mini-int4wo-gemlite --tokenizer microsoft/Phi-4-mini-instruct -O3
Client:
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-int4wo-hqq --num-prompts 1
Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
vllm serve jerryzh168/phi4-mini-int4wo-gemlite --tokenizer microsoft/Phi-4-mini-instruct -O3
- Downloads last month
- 791
Model tree for jerryzh168/phi4-mini-int4wo-gemlite
Base model
microsoft/Phi-4-mini-instruct